--- title: Seurat (三) scRNA-seq数据全流程分析 (三) tags: [] id: '824' categories: - - Seurat教程 - - 生物信息学 date: 2021-10-01 15:38:22 --- ## 第九步 提取Neuron细胞群 ``` sc_Neuron <- subset(x = scRNA, integrated_snn_res.0.5 %in% c("2","6","8","11","13","15")) saveRDS(sc_Neuron, "sc_Neuron.rds") ``` ## 第十步 细化分析-手动 ``` f_draw_VariableFeatures <- function(sObject){ # sObject <- FindVariableFeatures(sObject, selection.method = "vst", nfeatures = 2000) # Identify the 10 most highly variable genes top10 <- head(VariableFeatures(sObject), 10) # plot variable features with and without labels plot1 <- VariableFeaturePlot(sObject) plot2 <- LabelPoints(plot = plot1, points = top10, repel = TRUE) plot2 } options(repr.plot.width=8, repr.plot.height=6) sc_Neuron <- FindVariableFeatures(sc_Neuron, selection.method = "vst", nfeatures = 2000) f_draw_VariableFeatures(sc_Neuron) sc_Neuron <- RunPCA(sc_Neuron, features = VariableFeatures(object = sc_Neuron)) options(repr.plot.width=12, repr.plot.height=6) ElbowPlot(scRNA, ndims = 50) pca_dim = 30 sc_Neuron <- RunUMAP(sc_Neuron, dims = 1:pca_dim) lc_reduction = "umap" options(repr.plot.width=9, repr.plot.height=9) DimPlot(sc_Neuron, reduction = lc_reduction, group.by = 'orig.ident', label = T, repel = T, label.size = 6) + labs(title = "UMAP reduction of brain regions") options(repr.plot.width=9, repr.plot.height=18) f_UMAP_more(sc_Neuron, c('hM1_hmca_class', 'manual_2')) # 14、划分细胞群 sc_Neuron <- FindNeighbors(sc_Neuron, dims = 1:pca_dim) sc_Neuron <- FindClusters(sc_Neuron, resolution = 1) options(repr.plot.width=9, repr.plot.height=9) DimPlot(sc_Neuron, reduction = lc_reduction) sc_Neuron <- FindClusters(sc_Neuron, resolution = 2) options(repr.plot.width=9, repr.plot.height=9) DimPlot(sc_Neuron, reduction = lc_reduction) # 16、寻找显著基因 Neuron_markers <- FindAllMarkers(sc_Neuron, only.pos = TRUE, min.pct = 0.25, logfc.threshold = 0.25) significant_Neuron_markers <- subset(Neuron_markers, subset = p_val_adj<0.05) write.csv(significant_Neuron_markers, "significant_Neuron_markers.csv") gl_ExN_InN <- rbind(gl_Markers_ExN, gl_Markers_InN) tp_image <- f_get_m_p_a(sc_Neuron, significant_Neuron_markers, gl_ExN_InN) f_image_output('gl_ExN_InN',tp_image, width = 2160, height = 2160) Idents(sc_Neuron) <- sc_Neuron[['integrated_snn_res.2']] f_setDistinction(sc_Neuron, "Manual_distinction_3.csv", significant_Neuron_markers, gl_ExN_InN) Idents(sc_Neuron) <- sc_Neuron[['integrated_snn_res.2']] sc_Neuron <- f_add_annotation(sc_Neuron, 'manual_3', "Manual_distinction_3.csv") options(repr.plot.width=9, repr.plot.height=18) f_UMAP_more(sc_Neuron, c('hM1_hmca_class', 'manual_3')) ``` ## 第十一步 细化分析 -自动