--- title: 从差异基因到RRA聚合 tags: [] id: '1925' categories: - - uncategorized date: 2022-07-22 03:11:31 --- 通过[比对](https://occdn.limour.top/1934.html),我们得到了counts矩阵,接下来可以进行DEGs分析。此时如果我们有多组之间的对比,则可以使用[RRA算法](https://occdn.limour.top/1658.html)来聚合我们的结果。[RRA的安装过程见此](https://occdn.limour.top/1653.html)。 ## 第一步,多组差异基因分析 ```R library(DESeq2) count_all <- read.csv("~/upload/zl_liu/star_data/yyz_01/yyz_01.csv",header=TRUE) count_all cts_b <- count_all[ ,c(-1,-2,-3)] rownames(cts_b) <- count_all$ID keep <- rowSums(cts_b) > ncol(cts_b) cts_b[keep,] f_DESeq2 <- function(cts_bb, rowInfo, ControlN, TreatN, rm.NA=T){ cts_b <- cts_bb[,c(ControlN, TreatN)] conditions <- factor(c(rep("Control",length(ControlN)), rep("Treat",length(TreatN)))) colData_b <- data.frame(row.names = colnames(cts_b), conditions) print(colData_b) dds <- DESeqDataSetFromMatrix(countData = cts_b, colData = colData_b, design = ~ conditions) dds <- DESeq(dds) res <- results(dds) rres <- cbind(rowInfo, data.frame(res)) if(rm.NA){rres <- rres[!is.na(rres$padj),]} rres <- rres[order(rres$log2FoldChange, decreasing = T),] saveRDS(rres, paste('DEGs', paste(TreatN, collapse = '_'), 'vs.', paste(ControlN, collapse = '_'), 'DESeq2.rds',sep = '_')) rres } Ct1 <- c('X1.control.DMSO', 'X2.control.DMSO') Tt1 <- c('X1.OE.DMSO', 'X2.OE.DMSO') Ct2 <- c('X1.OE.DMSO', 'X2.OE.DMSO') Tt2 <- c('X1.OE.Enz', 'X2.OE.Enz') Ct3 <- c('X1.control.Enz', 'X2.control.Enz') Tt3 <- c('X1.OE.Enz', 'X2.OE.Enz') Ct4 <- c('X1.CAF.DMSO', 'X2.CAF.DMSO') Tt4 <- c('X1.CAF.Enz', 'X2.CAF.Enz') r1 <- f_DESeq2(cts_b[keep,], count_all[keep,c(1,2,3)], Ct1, Tt1) r2 <- f_DESeq2(cts_b[keep,], count_all[keep,c(1,2,3)], Ct2, Tt2) r3 <- f_DESeq2(cts_b[keep,], count_all[keep,c(1,2,3)], Ct3, Tt3) r4 <- f_DESeq2(cts_b[keep,], count_all[keep,c(1,2,3)], Ct4, Tt4) ``` ## 第二步,RRA聚合差异结果 ```R require(RobustRankAggreg) f_dflist_RRA <- function(dflist, nameN, N, orderN, decreasing=T){ res <- list() for (name in names(dflist)){ tmp <- dflist[[name]] if (nrow(tmp) == 1){ res[[name]] <- tmp[1, nameN] }else if(nrow(tmp) >=2){ res[[name]] <- tmp[order(tmp[[orderN]],decreasing = decreasing), nameN] } } if(length(res) < 1){ return(NULL)} aggregateRanks(glist = res, N = N) } rownames(count_all) <- count_all$ID r <- list(r1=r1,r2=r2,r3=r3,r4=r4) r <- lapply(r, FUN = function(x){subset(x, padj<0.05 & log2FoldChange > 1)}) r <- f_dflist_RRA(r, 'ID', sum(keep), 'log2FoldChange') r <- cbind(count_all[r$Name,c(2,3)], r) r write.csv(r, 'RRA_up.csv') r <- list(r1=r1,r2=r2,r3=r3,r4=r4) r <- lapply(r, FUN = function(x){subset(x, padj<0.05 & log2FoldChange < -1)}) r <- f_dflist_RRA(r, 'ID', sum(keep), 'log2FoldChange', decreasing = F) r <- cbind(count_all[r$Name,c(2,3)], r) r write.csv(r, 'RRA_down.csv') ```