123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676 |
- <!DOCTYPE html>
- <html lang="en" data-default-color-scheme=auto>
- <head><!-- hexo injector head_begin start -->
- <script async src="https://analytics.umami.is/script.js" data-website-id="e59ec28a-c9a7-4104-9e62-a9f7eb3fac0b"></script>
- <!-- hexo injector head_begin end -->
- <meta charset="UTF-8">
- <link rel="apple-touch-icon" sizes="76x76" href="https://img.limour.top/2023/08/29/64ee07361815a.webp">
- <link rel="icon" href="https://img.limour.top/2023/08/29/64ee07361815a.webp">
- <meta name="viewport" content="width=device-width, initial-scale=1.0, maximum-scale=5.0, shrink-to-fit=no">
- <meta http-equiv="x-ua-compatible" content="ie=edge">
-
- <meta name="theme-color" content="#2f4154">
- <meta name="author" content="Limour">
- <meta name="keywords" content="">
-
- <meta name="description" content="第一步 切出神经细胞1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991">
- <meta property="og:type" content="article">
- <meta property="og:title" content="SingleR (六) 切出指定群并检验">
- <meta property="og:url" content="https://b.limour.top/829.html">
- <meta property="og:site_name" content="Limour's Blog">
- <meta property="og:description" content="第一步 切出神经细胞1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991">
- <meta property="og:locale" content="en_US">
- <meta property="og:image" content="https://img-cdn.limour.top/blog_wp/2021/10/p.png">
- <meta property="og:image" content="https://img-cdn.limour.top/blog_wp/2021/10/cor.png">
- <meta property="og:image" content="https://img-cdn.limour.top/blog_wp/2021/10/gl_ExN_InN-1.png">
- <meta property="article:published_time" content="2021-10-01T11:14:59.000Z">
- <meta property="article:modified_time" content="2023-09-01T13:32:00.565Z">
- <meta property="article:author" content="Limour">
- <meta name="twitter:card" content="summary_large_image">
- <meta name="twitter:image" content="https://img-cdn.limour.top/blog_wp/2021/10/p.png">
-
-
-
- <title>SingleR (六) 切出指定群并检验 - Limour's Blog</title>
- <link rel="stylesheet" href="https://jscdn.limour.top/npm/bootstrap@4.6.1/dist/css/bootstrap.min.css" />
- <link rel="stylesheet" href="https://jscdn.limour.top/npm/github-markdown-css@4.0.0/github-markdown.min.css" />
- <link rel="stylesheet" href="https://jscdn.limour.top/npm/hint.css@2.7.0/hint.min.css" />
- <link rel="stylesheet" href="https://lib.baomitu.com/fancybox/3.5.7/jquery.fancybox.min.css" />
- <!-- 主题依赖的图标库,不要自行修改 -->
- <!-- Do not modify the link that theme dependent icons -->
- <link rel="stylesheet" href="//at.alicdn.com/t/font_1749284_hj8rtnfg7um.css">
- <link rel="stylesheet" href="//at.alicdn.com/t/font_1736178_lbnruvf0jn.css">
- <link rel="stylesheet" href="/css/main.css" />
- <link id="highlight-css" rel="stylesheet" href="/css/highlight.css" />
-
- <link id="highlight-css-dark" rel="stylesheet" href="/css/highlight-dark.css" />
-
-
- <link rel="stylesheet" href="/theme-inject/custom.css">
- <script id="fluid-configs">
- var Fluid = window.Fluid || {};
- Fluid.ctx = Object.assign({}, Fluid.ctx)
- var CONFIG = {"hostname":"b.limour.top","root":"/","version":"1.9.5-a","typing":{"enable":true,"typeSpeed":70,"cursorChar":"_","loop":false,"scope":[]},"anchorjs":{"enable":true,"element":"h1,h2,h3,h4,h5,h6","placement":"left","visible":"hover","icon":"§"},"progressbar":{"enable":true,"height_px":3,"color":"#29d","options":{"showSpinner":false,"trickleSpeed":100}},"code_language":{"enable":true,"default":"TEXT"},"copy_btn":true,"image_caption":{"enable":true},"image_zoom":{"enable":true,"img_url_replace":["",""]},"toc":{"enable":true,"placement":"right","headingSelector":"h1,h2,h3,h4,h5,h6","collapseDepth":0},"lazyload":{"enable":true,"loading_img":"https://jscdn.limour.top/gh/Limour-dev/Sakurairo_Vision/load_svg/inload.svg","onlypost":false,"offset_factor":2},"web_analytics":{"enable":false,"follow_dnt":true,"baidu":null,"google":{"measurement_id":null},"tencent":{"sid":null,"cid":null},"woyaola":null,"cnzz":null,"leancloud":{"app_id":null,"app_key":null,"server_url":null,"path":"window.location.pathname","ignore_local":false}},"search_path":"/local-search.xml","include_content_in_search":true};
- if (CONFIG.web_analytics.follow_dnt) {
- var dntVal = navigator.doNotTrack || window.doNotTrack || navigator.msDoNotTrack;
- Fluid.ctx.dnt = dntVal && (dntVal.startsWith('1') || dntVal.startsWith('yes') || dntVal.startsWith('on'));
- }
- </script>
- <script src="/js/utils.js" ></script>
- <script src="/js/color-schema.js" ></script>
-
-
- <meta name="generator" content="Hexo 6.3.0"></head>
- <body>
-
- <header>
-
- <div class="header-inner" style="height: 70vh;">
- <nav id="navbar" class="navbar fixed-top navbar-expand-lg navbar-dark scrolling-navbar">
- <div class="container">
- <a class="navbar-brand" href="/">
- <strong>Limour's Blog</strong>
- </a>
- <button id="navbar-toggler-btn" class="navbar-toggler" type="button" data-toggle="collapse"
- data-target="#navbarSupportedContent"
- aria-controls="navbarSupportedContent" aria-expanded="false" aria-label="Toggle navigation">
- <div class="animated-icon"><span></span><span></span><span></span></div>
- </button>
- <!-- Collapsible content -->
- <div class="collapse navbar-collapse" id="navbarSupportedContent">
- <ul class="navbar-nav ml-auto text-center">
-
-
-
-
-
- <li class="nav-item">
- <a class="nav-link" href="/">
- <i class="iconfont icon-home-fill"></i>
- <span>Home</span>
- </a>
- </li>
-
-
-
-
-
-
- <li class="nav-item">
- <a class="nav-link" href="/archives/">
- <i class="iconfont icon-archive-fill"></i>
- <span>Archives</span>
- </a>
- </li>
-
-
-
- <li class="nav-item" id="search-btn">
- <a class="nav-link" target="_self" href="javascript:;" data-toggle="modal" data-target="#modalSearch" aria-label="Search">
- <i class="iconfont icon-search"></i>
- </a>
- </li>
-
-
-
- <li class="nav-item" id="color-toggle-btn">
- <a class="nav-link" target="_self" href="javascript:;" aria-label="Color Toggle">
- <i class="iconfont icon-dark" id="color-toggle-icon"></i>
- </a>
- </li>
-
- </ul>
- </div>
- </div>
- </nav>
-
- <div id="banner" class="banner" parallax=true
- style="background: url('https://img.limour.top/2023/08/29/64ee08e108638.webp') no-repeat center center; background-size: cover;">
- <div class="full-bg-img">
- <div class="mask flex-center" style="background-color: rgba(0, 0, 0, 0.3)">
- <div class="banner-text text-center fade-in-up">
- <div class="h2">
-
- <span id="subtitle" data-typed-text="SingleR (六) 切出指定群并检验"></span>
-
- </div>
-
-
- <div class="mt-3">
-
-
- <span class="post-meta">
- <i class="iconfont icon-date-fill" aria-hidden="true"></i>
- <time datetime="2021-10-01 19:14" pubdate>
- October 1, 2021 pm
- </time>
- </span>
-
- </div>
- <div class="mt-1">
-
- <span class="post-meta mr-2">
- <i class="iconfont icon-chart"></i>
-
- 9.3k words
-
- </span>
-
-
- <span class="post-meta mr-2">
- <i class="iconfont icon-clock-fill"></i>
-
-
-
- 78 mins
-
- </span>
-
-
-
- </div>
-
- </div>
-
- </div>
- </div>
- </div>
- </div>
- </header>
- <main>
-
-
- <div class="container-fluid nopadding-x">
- <div class="row nomargin-x">
- <div class="side-col d-none d-lg-block col-lg-2">
-
- </div>
- <div class="col-lg-8 nopadding-x-md">
- <div class="container nopadding-x-md" id="board-ctn">
- <div id="board">
- <article class="post-content mx-auto">
- <h1 id="seo-header">SingleR (六) 切出指定群并检验</h1>
-
-
- <div class="markdown-body">
-
- <h2 id="第一步-切出神经细胞"><a href="#第一步-切出神经细胞" class="headerlink" title="第一步 切出神经细胞"></a>第一步 切出神经细胞</h2><figure class="highlight lua"><table><tr><td class="gutter"><pre><span class="line">1</span><br><span class="line">2</span><br><span class="line">3</span><br><span class="line">4</span><br><span class="line">5</span><br><span class="line">6</span><br><span class="line">7</span><br><span class="line">8</span><br><span class="line">9</span><br><span class="line">10</span><br><span class="line">11</span><br><span class="line">12</span><br><span class="line">13</span><br><span class="line">14</span><br><span class="line">15</span><br><span class="line">16</span><br><span class="line">17</span><br><span class="line">18</span><br><span class="line">19</span><br><span class="line">20</span><br><span class="line">21</span><br><span class="line">22</span><br><span class="line">23</span><br><span class="line">24</span><br><span class="line">25</span><br><span class="line">26</span><br><span class="line">27</span><br><span class="line">28</span><br><span class="line">29</span><br><span class="line">30</span><br><span class="line">31</span><br><span class="line">32</span><br><span class="line">33</span><br><span class="line">34</span><br><span class="line">35</span><br><span class="line">36</span><br><span class="line">37</span><br><span class="line">38</span><br><span class="line">39</span><br><span class="line">40</span><br><span class="line">41</span><br><span class="line">42</span><br><span class="line">43</span><br><span class="line">44</span><br><span class="line">45</span><br><span class="line">46</span><br><span class="line">47</span><br><span class="line">48</span><br><span class="line">49</span><br><span class="line">50</span><br><span class="line">51</span><br><span class="line">52</span><br><span class="line">53</span><br><span class="line">54</span><br><span class="line">55</span><br><span class="line">56</span><br><span class="line">57</span><br><span class="line">58</span><br><span class="line">59</span><br><span class="line">60</span><br><span class="line">61</span><br><span class="line">62</span><br><span class="line">63</span><br><span class="line">64</span><br><span class="line">65</span><br><span class="line">66</span><br><span class="line">67</span><br><span class="line">68</span><br><span class="line">69</span><br><span class="line">70</span><br><span class="line">71</span><br><span class="line">72</span><br><span class="line">73</span><br><span class="line">74</span><br><span class="line">75</span><br><span class="line">76</span><br><span class="line">77</span><br><span class="line">78</span><br><span class="line">79</span><br><span class="line">80</span><br><span class="line">81</span><br><span class="line">82</span><br><span class="line">83</span><br><span class="line">84</span><br><span class="line">85</span><br><span class="line">86</span><br><span class="line">87</span><br><span class="line">88</span><br><span class="line">89</span><br><span class="line">90</span><br><span class="line">91</span><br><span class="line">92</span><br><span class="line">93</span><br><span class="line">94</span><br><span class="line">95</span><br><span class="line">96</span><br><span class="line">97</span><br><span class="line">98</span><br><span class="line">99</span><br><span class="line">100</span><br><span class="line">101</span><br><span class="line">102</span><br><span class="line">103</span><br><span class="line">104</span><br><span class="line">105</span><br><span class="line">106</span><br><span class="line">107</span><br><span class="line">108</span><br><span class="line">109</span><br><span class="line">110</span><br><span class="line">111</span><br><span class="line">112</span><br><span class="line">113</span><br><span class="line">114</span><br><span class="line">115</span><br><span class="line">116</span><br><span class="line">117</span><br><span class="line">118</span><br><span class="line">119</span><br><span class="line">120</span><br><span class="line">121</span><br><span class="line">122</span><br><span class="line">123</span><br><span class="line">124</span><br><span class="line">125</span><br><span class="line">126</span><br><span class="line">127</span><br><span class="line">128</span><br><span class="line">129</span><br><span class="line">130</span><br><span class="line">131</span><br><span class="line">132</span><br><span class="line">133</span><br></pre></td><td class="code"><pre><code class="hljs lua">library(Matrix)<br>library(Seurat)<br>library(plyr)<br>library(dplyr)<br>library(patchwork)<br>library(purrr)<br><br>library(RColorBrewer)<br>library(ggplot2)<br>library(ggrepel)<br>blank_theme <- theme_minimal()+<br> theme(<br> axis.title.x = element_blank(),<br> axis.text.x=element_blank(),<br> axis.title.y = element_blank(),<br> axis.text.y=element_blank(),<br> panel.border = element_blank(),<br> panel.grid=element_blank(),<br> axis.ticks = element_blank(),<br> plot.title=element_text(size=<span class="hljs-number">14</span>, face=<span class="hljs-string">"bold"</span>,hjust = <span class="hljs-number">0.5</span>)<br> )<br>col_Paired <- colorRampPalette(brewer.pal(<span class="hljs-number">12</span>, <span class="hljs-string">"Paired"</span>))<br>f_pie <- <span class="hljs-function"><span class="hljs-keyword">function</span><span class="hljs-params">(lc_x, lc_main, lc_x_p = 1.3, lc_r = T)</span></span>{<br> lc_cols <- col_Paired(length(lc_x))<br> lc_v <- as.vector(<span class="hljs-number">100</span>*lc_x)<br> lc_df <- data.frame(<span class="hljs-built_in">type</span> = names(lc_x), nums = lc_v)<br> lc_df <- lc_df[order(lc_df$<span class="hljs-built_in">type</span>),]<br> lc_percent = sprintf(<span class="hljs-string">'%0.2f%%'</span>,lc_df$nums)<br> <span class="hljs-keyword">if</span>(lc_r){<br> lc_df$pos <- with(lc_df, <span class="hljs-number">100</span>-cumsum(nums)+nums/<span class="hljs-number">2</span>)<br> }<span class="hljs-keyword">else</span>{<br> lc_df$pos <- with(lc_df, cumsum(nums)-nums/<span class="hljs-number">2</span>)<br> } <br> lc_pie <- ggplot(data = lc_df, mapping = aes(x = <span class="hljs-number">1</span>, y = nums, fill = <span class="hljs-built_in">type</span>)) + geom_bar(stat = <span class="hljs-string">'identity'</span>)<br># <span class="hljs-built_in">print</span>(lc_df)<br># <span class="hljs-built_in">print</span>(lc_pie)<br> lc_pie <- lc_pie + coord_polar(<span class="hljs-string">"y"</span>, start=<span class="hljs-number">0</span>, direction = <span class="hljs-number">1</span>) + scale_fill_manual(values=lc_cols) + blank_theme <br> lc_pie <- lc_pie + geom_text_repel(aes(x = lc_x_p, y=pos),label= lc_percent, force = T, <br> arrow = arrow(length=unit(<span class="hljs-number">0.01</span>, <span class="hljs-string">"npc"</span>)), segment.color = <span class="hljs-string">"#cccccc"</span>, segment.size = <span class="hljs-number">0.5</span>)<br> lc_pie <- lc_pie + labs(title = lc_main)<br> lc_pie<br>}<br><br># 配置数据和mark基因表的路径<br>root_path = <span class="hljs-string">"~/zlliu/R_data/hBLA"</span><br> <br># 配置结果保存路径<br>output_path = <span class="hljs-string">"~/zlliu/R_data/21.10.01.10x"</span><br><span class="hljs-keyword">if</span> (!file.exists(output_path)){dir.<span class="hljs-built_in">create</span>(output_path)}<br> <br># 设置工作目录,输出文件将保存在此目录下<br>setwd(output_path)<br>getwd()<br><br>scRNA <- readRDS(<span class="hljs-string">'~/zlliu/R_data/21.09.29.10x/scRNA.rds'</span>)<br><br>scRNA<br><br>f_UMAP_more <- <span class="hljs-function"><span class="hljs-keyword">function</span><span class="hljs-params">(sObject, lc_group.by, lc_reduction="umap")</span></span>{<br> res <- (DimPlot(sObject, reduction = lc_reduction, group.by = lc_group.by[<span class="hljs-number">1</span>], label = T, repel = T, label.size = <span class="hljs-number">6</span>) + <br> labs(title = lc_group.by[<span class="hljs-number">1</span>]))<br> <span class="hljs-keyword">for</span>(lc_i <span class="hljs-keyword">in</span> <span class="hljs-number">2</span>:length(lc_group.by)){<br> res <- res/<br> (DimPlot(sObject, reduction = lc_reduction, group.by = lc_group.by[lc_i], label = T, repel = T, label.size = <span class="hljs-number">6</span>) + <br> labs(title = lc_group.by[lc_i]))<br> }<br> res<br>}<br><br>scRNA@meta.data<br><br>Idents(scRNA) <- scRNA<span class="hljs-string">[["hM1_hmca_class"]]</span><br><br>options(repr.plot.width=<span class="hljs-number">9</span>, repr.plot.height=<span class="hljs-number">18</span>)<br>options(ggrepel.<span class="hljs-built_in">max</span>.overlaps = Inf)<br>f_UMAP_more(scRNA, c(<span class="hljs-string">'hM1_hmca_class'</span>, <span class="hljs-string">'hM1_class'</span>, <span class="hljs-string">'hmca_class'</span>))<br><br>levels(scRNA)<br><br>unique(scRNA<span class="hljs-string">[["hmca_class"]]</span>)<br><br>unique(scRNA<span class="hljs-string">[["hM1_class"]]</span>)<br><br>n_ExN <- c(<span class="hljs-string">'L4 IT'</span>,<span class="hljs-string">'L5 IT'</span>,<span class="hljs-string">'L5 ET'</span>,<span class="hljs-string">'IT'</span>,<span class="hljs-string">'L6b'</span>,<span class="hljs-string">'L5/6 IT Car3'</span>,<span class="hljs-string">'L6 IT'</span>,<span class="hljs-string">'L2/3 IT'</span>,<span class="hljs-string">'L5/6 NP'</span>,<span class="hljs-string">'L6 IT Car3'</span>,<span class="hljs-string">'L6 CT'</span>)<br><br>n_InN <- c(<span class="hljs-string">'Lamp5'</span>,<span class="hljs-string">'Pvalb'</span>,<span class="hljs-string">'Sst'</span>,<span class="hljs-string">'Vip'</span>,<span class="hljs-string">'Sncg'</span>)<br><br>n_NoN <- c(<span class="hljs-string">'Astro'</span>,<span class="hljs-string">'PAX6'</span>,<span class="hljs-string">'Endo'</span>,<span class="hljs-string">'Micro-PVM'</span>,<span class="hljs-string">'OPC'</span>,<span class="hljs-string">'Oligo'</span>,<span class="hljs-string">'Pericyte'</span>,<span class="hljs-string">'VLMC'</span>)<br><br>n_groups <- list(NoN=n_NoN, ExN=n_ExN, InN=n_InN)<br><br>f_listUpdateRe <- <span class="hljs-function"><span class="hljs-keyword">function</span><span class="hljs-params">(lc_obj, lc_bool, lc_item)</span></span>{<br> lc_obj[lc_bool] <- <span class="hljs-built_in">rep</span>(lc_item,times=sum(lc_bool))<br> lc_obj<br>}<br><br>f_grouplabel <- <span class="hljs-function"><span class="hljs-keyword">function</span><span class="hljs-params">(lc_meta.data, lc_groups)</span></span>{<br> res <- lc_meta.data<span class="hljs-string">[[1]]</span><br> <span class="hljs-keyword">for</span>(lc_g <span class="hljs-keyword">in</span> names(lc_groups)){<br> lc_bool = (res %<span class="hljs-keyword">in</span>% lc_groups<span class="hljs-string">[[lc_g]]</span>)<br> <span class="hljs-keyword">for</span>(c_n <span class="hljs-keyword">in</span> colnames(lc_meta.data)){<br> lc_bool = lc_bool (lc_meta.data<span class="hljs-string">[[c_n]]</span> %<span class="hljs-keyword">in</span>% lc_groups<span class="hljs-string">[[lc_g]]</span>)<br> }<br> res <- f_listUpdateRe(res, lc_bool, lc_g)<br> }<br> names(res) <- rownames(lc_meta.data)<br> res<br>}<br><br>scRNA<span class="hljs-string">[['n_groups']]</span> <- f_grouplabel(scRNA<span class="hljs-string">[[c("hM1_hmca_class","hM1_class","hmca_class")]]</span>, n_groups)<br><br>options(repr.plot.width=<span class="hljs-number">9</span>, repr.plot.height=<span class="hljs-number">12</span>)<br>options(ggrepel.<span class="hljs-built_in">max</span>.overlaps = Inf)<br>f_UMAP_more(scRNA, c(<span class="hljs-string">'hM1_hmca_class'</span>, <span class="hljs-string">'n_groups'</span>))<br><br>sc_Neuron <- subset(x = scRNA, n_groups %<span class="hljs-keyword">in</span>% c(<span class="hljs-string">"InN"</span>, <span class="hljs-string">"ExN"</span>))<br>saveRDS(sc_Neuron, <span class="hljs-string">"sc_Neuron.rds"</span>)<br><br>f_UMAP_more(sc_Neuron, c(<span class="hljs-string">'hM1_hmca_class'</span>, <span class="hljs-string">'hM1_class'</span>, <span class="hljs-string">'hmca_class'</span>))<br><br>scRNA<span class="hljs-string">[['hM1_hmca_groups']]</span> <- f_grouplabel(scRNA<span class="hljs-string">[["hM1_hmca_class"]]</span>, n_groups)<br>scRNA<span class="hljs-string">[['hmca_groups']]</span> <- f_grouplabel(scRNA<span class="hljs-string">[["hmca_class"]]</span>, n_groups)<br>scRNA<span class="hljs-string">[['hM1_groups']]</span> <- f_grouplabel(scRNA<span class="hljs-string">[["hM1_class"]]</span>, n_groups)<br><br>sc_Neuron <- subset(x = scRNA, hmca_groups %<span class="hljs-keyword">in</span>% c(<span class="hljs-string">"InN"</span>, <span class="hljs-string">"ExN"</span>))<br>saveRDS(sc_Neuron, <span class="hljs-string">"sc_Neuron.rds"</span>)<br>Idents(sc_Neuron) <- sc_Neuron<span class="hljs-string">[['hmca_class']]</span><br><br>f_pie_metaN <- <span class="hljs-function"><span class="hljs-keyword">function</span><span class="hljs-params">(sObject, lc_group.by)</span></span>{<br> tp_data <- prop.<span class="hljs-built_in">table</span>(<span class="hljs-built_in">table</span>(sObject<span class="hljs-string">[[lc_group.by]]</span>))<br> f_pie(tp_data, sprintf(<span class="hljs-string">'Proportion of %s'</span>, lc_group.by))<br>}<br><br></code></pre></td></tr></table></figure>
- <p><a target="_blank" rel="noopener" href="https://img-cdn.limour.top/blog_wp/2021/10/p.png"><img src="https://img-cdn.limour.top/blog_wp/2021/10/p.png" srcset="https://jscdn.limour.top/gh/Limour-dev/Sakurairo_Vision/load_svg/inload.svg" lazyload></a></p>
- <h2 id="第二步-画图查看相关性"><a href="#第二步-画图查看相关性" class="headerlink" title="第二步 画图查看相关性"></a>第二步 画图查看相关性</h2><figure class="highlight lua"><table><tr><td class="gutter"><pre><span class="line">1</span><br><span class="line">2</span><br><span class="line">3</span><br><span class="line">4</span><br><span class="line">5</span><br><span class="line">6</span><br><span class="line">7</span><br><span class="line">8</span><br><span class="line">9</span><br><span class="line">10</span><br><span class="line">11</span><br><span class="line">12</span><br><span class="line">13</span><br><span class="line">14</span><br><span class="line">15</span><br><span class="line">16</span><br><span class="line">17</span><br><span class="line">18</span><br><span class="line">19</span><br><span class="line">20</span><br><span class="line">21</span><br><span class="line">22</span><br><span class="line">23</span><br><span class="line">24</span><br><span class="line">25</span><br><span class="line">26</span><br><span class="line">27</span><br><span class="line">28</span><br><span class="line">29</span><br><span class="line">30</span><br><span class="line">31</span><br><span class="line">32</span><br><span class="line">33</span><br><span class="line">34</span><br><span class="line">35</span><br></pre></td><td class="code"><pre><code class="hljs lua">f_cluster_averages <- <span class="hljs-function"><span class="hljs-keyword">function</span><span class="hljs-params">(lc_scRNA)</span></span>{<br> # 切分出Clusters<br> lc_clusters <- SplitObject(lc_scRNA, split.by = <span class="hljs-string">'ident'</span>)<br> <span class="hljs-keyword">for</span> (lc_i <span class="hljs-keyword">in</span> <span class="hljs-number">1</span>:length(lc_clusters)){<br> lc_clusters<span class="hljs-string">[[lc_i]]</span> <- lc_clusters<span class="hljs-string">[[lc_i]]</span><span class="hljs-string">[[lc_clusters[[lc_i]]@active.assay]]</span>@scale.data<br> }<br> <span class="hljs-keyword">for</span> (lc_i <span class="hljs-keyword">in</span> <span class="hljs-number">1</span>:length(lc_clusters)){<br> lc_clusters<span class="hljs-string">[[lc_i]]</span> <- apply(lc_clusters<span class="hljs-string">[[lc_i]]</span>,<span class="hljs-number">1</span>,mean)<br> }<br> lc_clusters <- data.frame(lc_clusters)<br> scale(lc_clusters)<br>}<br><br>library(Hmisc)<br>library(corrplot)<br>f_corrplot <- <span class="hljs-function"><span class="hljs-keyword">function</span><span class="hljs-params">(lc_scdata)</span></span>{<br> lc_cor <- rcorr(lc_scdata)<br> lc_cor$P[is.na(lc_cor$P)]=<span class="hljs-number">0</span><br> lc_cor$P <- -<span class="hljs-built_in">log10</span>(lc_cor$P)<br> lc_cor$P[is.infinite(lc_cor$P)] = <span class="hljs-built_in">max</span>(lc_cor$P[!is.infinite(lc_cor$P)]) + <span class="hljs-number">1</span><br> corrplot(lc_cor$r, <span class="hljs-built_in">type</span>=<span class="hljs-string">"upper"</span>,tl.pos = <span class="hljs-string">"t"</span>, order = <span class="hljs-string">"hclust"</span>, <br> p.mat = lc_cor$P, insig = <span class="hljs-string">"p-value"</span>)<br> corrplot(lc_cor$r, add=TRUE, <span class="hljs-built_in">type</span>=<span class="hljs-string">"lower"</span>, method=<span class="hljs-string">"number"</span>,col=<span class="hljs-string">"black"</span>,<br> order = <span class="hljs-string">"hclust"</span>, tl.pos=<span class="hljs-string">"l"</span>, cl.pos=<span class="hljs-string">"n"</span>,addCoefasPercent = T)<br>}<br>tp_d <- f_cluster_averages(sc_Neuron)<br><br>library(Hmisc)<br>library(ggcorrplot)<br>f_corrplot <- <span class="hljs-function"><span class="hljs-keyword">function</span><span class="hljs-params">(lc_scdata)</span></span>{<br> lc_cor <- rcorr(lc_scdata)<br> lc_cor$P[is.na(lc_cor$P)]=<span class="hljs-number">0</span><br> ggcorrplot(lc_cor$r, <span class="hljs-built_in">type</span>=<span class="hljs-string">"full"</span>,hc.order = T, lab = T, p.mat = lc_cor$P)<br>}<br><br></code></pre></td></tr></table></figure>
- <p><a target="_blank" rel="noopener" href="https://img-cdn.limour.top/blog_wp/2021/10/cor.png"><img src="https://img-cdn.limour.top/blog_wp/2021/10/cor.png" srcset="https://jscdn.limour.top/gh/Limour-dev/Sakurairo_Vision/load_svg/inload.svg" lazyload></a></p>
- <h2 id="第三步-Cluster差异基因"><a href="#第三步-Cluster差异基因" class="headerlink" title="第三步 Cluster差异基因"></a>第三步 Cluster差异基因</h2><figure class="highlight reasonml"><table><tr><td class="gutter"><pre><span class="line">1</span><br><span class="line">2</span><br><span class="line">3</span><br><span class="line">4</span><br><span class="line">5</span><br><span class="line">6</span><br><span class="line">7</span><br><span class="line">8</span><br><span class="line">9</span><br><span class="line">10</span><br><span class="line">11</span><br><span class="line">12</span><br><span class="line">13</span><br><span class="line">14</span><br><span class="line">15</span><br><span class="line">16</span><br><span class="line">17</span><br><span class="line">18</span><br><span class="line">19</span><br><span class="line">20</span><br><span class="line">21</span><br><span class="line">22</span><br><span class="line">23</span><br><span class="line">24</span><br><span class="line">25</span><br><span class="line">26</span><br><span class="line">27</span><br><span class="line">28</span><br><span class="line">29</span><br><span class="line">30</span><br><span class="line">31</span><br><span class="line">32</span><br><span class="line">33</span><br><span class="line">34</span><br><span class="line">35</span><br><span class="line">36</span><br><span class="line">37</span><br><span class="line">38</span><br><span class="line">39</span><br><span class="line">40</span><br><span class="line">41</span><br><span class="line">42</span><br><span class="line">43</span><br><span class="line">44</span><br><span class="line">45</span><br><span class="line">46</span><br><span class="line">47</span><br><span class="line">48</span><br><span class="line">49</span><br><span class="line">50</span><br><span class="line">51</span><br><span class="line">52</span><br><span class="line">53</span><br><span class="line">54</span><br><span class="line">55</span><br><span class="line">56</span><br><span class="line">57</span><br><span class="line">58</span><br><span class="line">59</span><br><span class="line">60</span><br><span class="line">61</span><br><span class="line">62</span><br><span class="line">63</span><br><span class="line">64</span><br><span class="line">65</span><br><span class="line">66</span><br><span class="line">67</span><br><span class="line">68</span><br><span class="line">69</span><br><span class="line">70</span><br><span class="line">71</span><br><span class="line">72</span><br><span class="line">73</span><br><span class="line">74</span><br><span class="line">75</span><br><span class="line">76</span><br><span class="line">77</span><br><span class="line">78</span><br><span class="line">79</span><br><span class="line">80</span><br><span class="line">81</span><br><span class="line">82</span><br></pre></td><td class="code"><pre><code class="hljs reasonml"><span class="hljs-constructor">Idents(<span class="hljs-params">sc_Neuron</span>)</span> <- sc_Neuron<span class="hljs-literal">[['<span class="hljs-identifier">hmca_class</span>']</span>]<br>all_markers <- <span class="hljs-constructor">FindAllMarkers(<span class="hljs-params">sc_Neuron</span>, <span class="hljs-params">only</span>.<span class="hljs-params">pos</span> = TRUE, <span class="hljs-params">min</span>.<span class="hljs-params">pct</span> = 0.25, <span class="hljs-params">logfc</span>.<span class="hljs-params">threshold</span> = 0.25)</span><br>significant_markers <- subset(all_markers, subset = p_val_adj<<span class="hljs-number">0.05</span>)<br>write.csv(significant_markers, <span class="hljs-string">"significant_markers.csv"</span>)<br><br>significant_markers %>%<br> group<span class="hljs-constructor">_by(<span class="hljs-params">cluster</span>)</span> %>%<br> top<span class="hljs-constructor">_n(<span class="hljs-params">n</span> = 10, <span class="hljs-params">wt</span> = <span class="hljs-params">avg_log2FC</span>)</span> -> top10<br><span class="hljs-constructor">DoHeatmap(<span class="hljs-params">sc_Neuron</span>, <span class="hljs-params">features</span> = <span class="hljs-params">top10$gene</span>)</span><br><br>gl_Markers_ExN <- read.table(file.path(root_path, <span class="hljs-string">"ExN.csv"</span>), header = F)<br>colnames(gl_Markers_ExN) <- c('marker<span class="hljs-character">','</span>celltype')<br> <br>gl_Markers_InN <- read.table(file.path(root_path, <span class="hljs-string">"InN.csv"</span>), header = F)<br>colnames(gl_Markers_InN) <- c('marker<span class="hljs-character">','</span>celltype')<br><br>f_setRowName <- <span class="hljs-keyword">function</span>(lc_df, lc_colName){<br> lc_df <- lc_df<span class="hljs-literal">[<span class="hljs-identifier">order</span>(<span class="hljs-identifier">lc_df</span>[[<span class="hljs-identifier">lc_colName</span>]</span>]),]<br> tp_index <- duplicated(lc_df<span class="hljs-literal">[[<span class="hljs-identifier">lc_colName</span>]</span>])<br> lc_df <- lc_df<span class="hljs-literal">[!<span class="hljs-identifier">tp_index</span>,]</span><br> rownames(lc_df) <- lc_df<span class="hljs-literal">[[<span class="hljs-identifier">lc_colName</span>]</span>]<br> lc_df<br>}<br><br>gl_Markers_ExN <- f<span class="hljs-constructor">_setRowName(<span class="hljs-params">gl_Markers_ExN</span>, '<span class="hljs-params">marker</span>')</span><br>gl_Markers_InN <- f<span class="hljs-constructor">_setRowName(<span class="hljs-params">gl_Markers_InN</span>, '<span class="hljs-params">marker</span>')</span><br><br>gl_ExN_InN <- rbind(gl_Markers_ExN, gl_Markers_InN)<br><br># <span class="hljs-number">18</span>、绘制已知基因在不同cluster内的Violin plots<br># <span class="hljs-number">18.1</span> 定义Violin plots绘制方法<br>f_get_cell_markers <- <span class="hljs-keyword">function</span>(lc_cellType, lc_significant_markers, lc_MarkerGene){<br> lc_features <- rownames(subset(lc_MarkerGene, subset = celltype<span class="hljs-operator"> == </span>lc_cellType))<br> lc_features <- lc_features<span class="hljs-literal">[<span class="hljs-identifier">lc_features</span> %<span class="hljs-identifier">in</span>% <span class="hljs-identifier">lc_significant_markers$gene</span>]</span><br> lc_features<br>}<br>f_VlnPlot <- <span class="hljs-keyword">function</span>(sObject, lc_cellType, lc_significant_markers, lc_MarkerGene) {<br> lc_features <- f<span class="hljs-constructor">_get_cell_markers(<span class="hljs-params">lc_cellType</span>, <span class="hljs-params">lc_significant_markers</span>, <span class="hljs-params">lc_MarkerGene</span>)</span><br> <span class="hljs-keyword">if</span> (length(lc_features)!=<span class="hljs-number">0</span>){<span class="hljs-constructor">VlnPlot(<span class="hljs-params">sObject</span>, <span class="hljs-params">features</span> = <span class="hljs-params">lc_features</span>)</span>}<br> <span class="hljs-keyword">else</span>{ F } <br>}<br> <br>f_get_m_p <- <span class="hljs-keyword">function</span>(sObject, lc_cellType, lc_significant_markers, lc_MarkerGene){<br> lc_features <- f<span class="hljs-constructor">_get_cell_markers(<span class="hljs-params">lc_cellType</span>, <span class="hljs-params">lc_significant_markers</span>, <span class="hljs-params">lc_MarkerGene</span>)</span><br> <span class="hljs-keyword">if</span> (length(lc_features)==<span class="hljs-number">0</span>){return(NULL)}<br> <span class="hljs-constructor">DotPlot(<span class="hljs-params">sObject</span>, <span class="hljs-params">features</span> = <span class="hljs-params">lc_features</span>)</span> + <span class="hljs-constructor">RotatedAxis()</span> + <br> ggtitle(sprintf(<span class="hljs-string">"%s markers in %s"</span>, lc_cellType, sObject@project.name)) + <br> theme(plot.title = element<span class="hljs-constructor">_text(<span class="hljs-params">hjust</span> = 0.5)</span>)<br>}<br> <br># <span class="hljs-number">18.2</span> 绘制已知细胞类型的marker genes在本数据集中的pattern<br>f_get_all_celltype <- <span class="hljs-keyword">function</span>(lc_MarkerGene){<br> tp_cellTypes <- lc_MarkerGene$celltype # 获取所有细胞类型<br> tp_cellTypes <- sort(tp_cellTypes) # 排序<br> tp_cellTypes <- tp_cellTypes<span class="hljs-literal">[!<span class="hljs-identifier">duplicated</span>(<span class="hljs-identifier">tp_cellTypes</span>)]</span> #去重<br> tp_cellTypes<br>}<br> <br>f_get_m_p_a <- <span class="hljs-keyword">function</span>(sObject, lc_significant_markers, lc_MarkerGene){<br> lc_cellTypes <- f<span class="hljs-constructor">_get_all_celltype(<span class="hljs-params">lc_MarkerGene</span>)</span><br> tp_emm <- <span class="hljs-number">2</span><br> <span class="hljs-keyword">for</span> (lc_j <span class="hljs-keyword">in</span> <span class="hljs-number">1</span>:length(lc_cellTypes)){<br> lc_image <- f<span class="hljs-constructor">_get_m_p(<span class="hljs-params">sObject</span>, <span class="hljs-params">lc_cellTypes</span>[<span class="hljs-params">lc_j</span>], <span class="hljs-params">lc_significant_markers</span>, <span class="hljs-params">lc_MarkerGene</span>)</span><br> <span class="hljs-keyword">if</span> (!is.null(lc_image)){ break }<br> tp_emm <- tp_emm + <span class="hljs-number">1</span><br> }<br> <br> <span class="hljs-keyword">if</span> (tp_emm > length(lc_cellTypes)){return(NULL)}<br> <br> <span class="hljs-keyword">for</span>(lc_j <span class="hljs-keyword">in</span> tp_emm:length(lc_cellTypes)){<br> lc_image <- lc_image + f<span class="hljs-constructor">_get_m_p(<span class="hljs-params">sObject</span>, <span class="hljs-params">lc_cellTypes</span>[[<span class="hljs-params">lc_j</span>]], <span class="hljs-params">lc_significant_markers</span>, <span class="hljs-params">lc_MarkerGene</span>)</span><br> }<br> lc_image <- lc_image + plot<span class="hljs-constructor">_layout(<span class="hljs-params">ncol</span> = 3)</span><br> lc_image<br>}<br><br>f_image_output <- <span class="hljs-keyword">function</span>(fileName, image, width=<span class="hljs-number">1920</span>, height=<span class="hljs-number">1080</span>){<br> png(paste(fileName, <span class="hljs-string">".png"</span>, sep=<span class="hljs-string">""</span>), width = width, height = height)<br> print(image)<br> dev.off<span class="hljs-literal">()</span><br>}<br><br></code></pre></td></tr></table></figure>
- <p><a target="_blank" rel="noopener" href="https://img-cdn.limour.top/blog_wp/2021/10/gl_ExN_InN-1.png"><img src="https://img-cdn.limour.top/blog_wp/2021/10/gl_ExN_InN-1.png" srcset="https://jscdn.limour.top/gh/Limour-dev/Sakurairo_Vision/load_svg/inload.svg" lazyload></a></p>
-
- </div>
-
- <hr/>
- <div>
- <div class="post-metas my-3">
-
- <div class="post-meta mr-3 d-flex align-items-center">
- <i class="iconfont icon-category"></i>
-
- <span class="category-chains">
-
-
-
- <span class="category-chain">
-
- <a href="/categories/%E7%94%9F%E7%89%A9%E4%BF%A1%E6%81%AF%E5%AD%A6/" class="category-chain-item">生物信息学</a>
-
-
- </span>
-
-
-
- <span class="category-chain">
-
- <a href="/categories/Seurat%E6%95%99%E7%A8%8B/" class="category-chain-item">Seurat教程</a>
-
-
- </span>
-
-
- </span>
- </div>
-
-
- </div>
-
-
- <div class="license-box my-3">
- <div class="license-title">
- <div>SingleR (六) 切出指定群并检验</div>
- <div>https://b.limour.top/829.html</div>
- </div>
- <div class="license-meta">
-
- <div class="license-meta-item">
- <div>Author</div>
- <div>Limour</div>
- </div>
-
-
- <div class="license-meta-item license-meta-date">
- <div>Posted on</div>
- <div>October 1, 2021</div>
- </div>
-
-
-
- <div class="license-meta-item">
- <div>Licensed under</div>
- <div>
-
-
-
- <a class="print-no-link" target="_blank" href="https://creativecommons.org/licenses/by-nc-sa/4.0/">
- <span class="hint--top hint--rounded" aria-label="BY - Attribution">
- <i class="iconfont icon-by"></i>
- </span>
- </a>
-
- <a class="print-no-link" target="_blank" href="https://creativecommons.org/licenses/by-nc-sa/4.0/">
- <span class="hint--top hint--rounded" aria-label="NC - Non-commercial">
- <i class="iconfont icon-nc"></i>
- </span>
- </a>
-
- <a class="print-no-link" target="_blank" href="https://creativecommons.org/licenses/by-nc-sa/4.0/">
- <span class="hint--top hint--rounded" aria-label="SA - Share-alike">
- <i class="iconfont icon-sa"></i>
- </span>
- </a>
-
-
- </div>
- </div>
-
- </div>
- <div class="license-icon iconfont"></div>
- </div>
-
- <div class="post-prevnext my-3">
- <article class="post-prev col-6">
-
-
- <a href="/850.html" title="cellphoneDB (一) 使用流程">
- <i class="iconfont icon-arrowleft"></i>
- <span class="hidden-mobile">cellphoneDB (一) 使用流程</span>
- <span class="visible-mobile">Previous</span>
- </a>
-
- </article>
- <article class="post-next col-6">
-
-
- <a href="/824.html" title="Seurat (三) scRNA-seq数据全流程分析 (三)">
- <span class="hidden-mobile">Seurat (三) scRNA-seq数据全流程分析 (三)</span>
- <span class="visible-mobile">Next</span>
- <i class="iconfont icon-arrowright"></i>
- </a>
-
- </article>
- </div>
-
- </div>
-
-
-
- <article id="comments" lazyload>
-
- <div id="waline"></div>
- <script type="text/javascript">
- Fluid.utils.loadComments('#waline', function() {
- Fluid.utils.createCssLink('https://cdn.staticfile.org/waline/2.15.5/waline.min.css')
- Fluid.utils.createScript('https://cdn.staticfile.org/waline/2.15.5/waline.min.js', function() {
- var options = Object.assign(
- {"serverURL":"https://comments.limour.top","path":"window.location.pathname","meta":["nick","mail","link"],"requiredMeta":["nick"],"lang":"zh-CN","emoji":["https://jscdn.limour.top/gh/walinejs/emojis/weibo"],"dark":"html[data-user-color-scheme=\"dark\"]","wordLimit":0,"pageSize":10},
- {
- el: '#waline',
- path: window.location.pathname
- }
- )
- Waline.init(options);
- Fluid.utils.waitElementVisible('#waline .vcontent', () => {
- var imgSelector = '#waline .vcontent img:not(.vemoji)';
- Fluid.plugins.imageCaption(imgSelector);
- Fluid.plugins.fancyBox(imgSelector);
- })
- });
- });
- </script>
- <noscript>Please enable JavaScript to view the comments</noscript>
- </article>
-
- </article>
- </div>
- </div>
- </div>
- <div class="side-col d-none d-lg-block col-lg-2">
-
- <aside class="sidebar" style="margin-left: -1rem">
- <div id="toc">
- <p class="toc-header">
- <i class="iconfont icon-list"></i>
- <span>Table of Contents</span>
- </p>
- <div class="toc-body" id="toc-body"></div>
- </div>
- </aside>
- </div>
- </div>
- </div>
-
-
-
-
-
-
-
- <a id="scroll-top-button" aria-label="TOP" href="#" role="button">
- <i class="iconfont icon-arrowup" aria-hidden="true"></i>
- </a>
-
-
- <div class="modal fade" id="modalSearch" tabindex="-1" role="dialog" aria-labelledby="ModalLabel"
- aria-hidden="true">
- <div class="modal-dialog modal-dialog-scrollable modal-lg" role="document">
- <div class="modal-content">
- <div class="modal-header text-center">
- <h4 class="modal-title w-100 font-weight-bold">Search</h4>
- <button type="button" id="local-search-close" class="close" data-dismiss="modal" aria-label="Close">
- <span aria-hidden="true">×</span>
- </button>
- </div>
- <div class="modal-body mx-3">
- <div class="md-form mb-5">
- <input type="text" id="local-search-input" class="form-control validate">
- <label data-error="x" data-success="v" for="local-search-input">Keyword</label>
- </div>
- <div class="list-group" id="local-search-result"></div>
- </div>
- </div>
- </div>
- </div>
-
-
- </main>
- <footer>
- <div class="footer-inner">
-
- <div class="footer-content">
- <a target="_blank" rel="nofollow noopener" href="http://www.beian.gov.cn/portal/registerSystemInfo?recordcode=43130202000203"><img src="https://img.limour.top/2023/08/27/64eadeb81d6a0.webp" srcset="https://jscdn.limour.top/gh/Limour-dev/Sakurairo_Vision/load_svg/inload.svg" lazyload>湘公网安备 43130202000203号 </a> <a target="_blank" rel="nofollow noopener" href="https://beian.miit.gov.cn/">湘ICP备20008299号 </a> <a target="_blank" rel="nofollow noopener" href="https://icp.gov.moe/?keyword=20210128">萌ICP备20210128号</a> <br> <a href="https://www.foreverblog.cn/" target="_blank"> <img src="https://img.foreverblog.cn/logo_en_default.png" srcset="https://jscdn.limour.top/gh/Limour-dev/Sakurairo_Vision/load_svg/inload.svg" lazyload alt="" style="width:auto;height:24px"> </a> <br> <a href="https://hexo.io" target="_blank" rel="nofollow noopener"><span>Hexo</span></a> <i class="iconfont icon-love"></i> <a href="https://github.com/fluid-dev/hexo-theme-fluid" target="_blank" rel="nofollow noopener"><span>Fluid</span></a> <i class="iconfont icon-love"></i> <a href="https://github.com/limour-blog/archives-b" target="_blank" rel="nofollow noopener"><span>SRC</span></a>
- </div>
-
-
-
-
- </div>
- </footer>
- <!-- Scripts -->
-
- <script src="https://jscdn.limour.top/npm/nprogress@0.2.0/nprogress.min.js" ></script>
- <link rel="stylesheet" href="https://jscdn.limour.top/npm/nprogress@0.2.0/nprogress.min.css" />
- <script>
- NProgress.configure({"showSpinner":false,"trickleSpeed":100})
- NProgress.start()
- window.addEventListener('load', function() {
- NProgress.done();
- })
- </script>
- <script src="https://jscdn.limour.top/npm/jquery@3.6.4/dist/jquery.min.js" ></script>
- <script src="https://jscdn.limour.top/npm/bootstrap@4.6.1/dist/js/bootstrap.min.js" ></script>
- <script src="/js/events.js" ></script>
- <script src="/js/plugins.js" ></script>
- <script src="https://lib.baomitu.com/typed.js/2.0.12/typed.min.js" ></script>
- <script>
- (function (window, document) {
- var typing = Fluid.plugins.typing;
- var subtitle = document.getElementById('subtitle');
- if (!subtitle || !typing) {
- return;
- }
- var text = subtitle.getAttribute('data-typed-text');
-
- typing(text);
-
- })(window, document);
- </script>
-
- <script src="/js/img-lazyload.js" ></script>
-
-
- <script>
- Fluid.utils.createScript('https://jscdn.limour.top/npm/tocbot@4.20.1/dist/tocbot.min.js', function() {
- var toc = jQuery('#toc');
- if (toc.length === 0 || !window.tocbot) { return; }
- var boardCtn = jQuery('#board-ctn');
- var boardTop = boardCtn.offset().top;
- window.tocbot.init(Object.assign({
- tocSelector : '#toc-body',
- contentSelector : '.markdown-body',
- linkClass : 'tocbot-link',
- activeLinkClass : 'tocbot-active-link',
- listClass : 'tocbot-list',
- isCollapsedClass: 'tocbot-is-collapsed',
- collapsibleClass: 'tocbot-is-collapsible',
- scrollSmooth : true,
- includeTitleTags: true,
- headingsOffset : -boardTop,
- }, CONFIG.toc));
- if (toc.find('.toc-list-item').length > 0) {
- toc.css('visibility', 'visible');
- }
- Fluid.events.registerRefreshCallback(function() {
- if ('tocbot' in window) {
- tocbot.refresh();
- var toc = jQuery('#toc');
- if (toc.length === 0 || !tocbot) {
- return;
- }
- if (toc.find('.toc-list-item').length > 0) {
- toc.css('visibility', 'visible');
- }
- }
- });
- });
- </script>
- <script src=https://lib.baomitu.com/clipboard.js/2.0.11/clipboard.min.js></script>
- <script>Fluid.plugins.codeWidget();</script>
-
- <script>
- Fluid.utils.createScript('https://jscdn.limour.top/npm/anchor-js@4.3.1/anchor.min.js', function() {
- window.anchors.options = {
- placement: CONFIG.anchorjs.placement,
- visible : CONFIG.anchorjs.visible
- };
- if (CONFIG.anchorjs.icon) {
- window.anchors.options.icon = CONFIG.anchorjs.icon;
- }
- var el = (CONFIG.anchorjs.element || 'h1,h2,h3,h4,h5,h6').split(',');
- var res = [];
- for (var item of el) {
- res.push('.markdown-body > ' + item.trim());
- }
- if (CONFIG.anchorjs.placement === 'left') {
- window.anchors.options.class = 'anchorjs-link-left';
- }
- window.anchors.add(res.join(', '));
- Fluid.events.registerRefreshCallback(function() {
- if ('anchors' in window) {
- anchors.removeAll();
- var el = (CONFIG.anchorjs.element || 'h1,h2,h3,h4,h5,h6').split(',');
- var res = [];
- for (var item of el) {
- res.push('.markdown-body > ' + item.trim());
- }
- if (CONFIG.anchorjs.placement === 'left') {
- anchors.options.class = 'anchorjs-link-left';
- }
- anchors.add(res.join(', '));
- }
- });
- });
- </script>
-
- <script>
- Fluid.utils.createScript('https://lib.baomitu.com/fancybox/3.5.7/jquery.fancybox.min.js', function() {
- Fluid.plugins.fancyBox();
- });
- </script>
- <script>Fluid.plugins.imageCaption();</script>
- <script src="/js/local-search.js" ></script>
- <!-- 主题的启动项,将它保持在最底部 -->
- <!-- the boot of the theme, keep it at the bottom -->
- <script src="/js/boot.js" ></script>
-
- <noscript>
- <div class="noscript-warning">Blog works best with JavaScript enabled</div>
- </noscript>
- <!-- hexo injector body_end start -->
- <script defer src="/theme-inject/timeliness.js"></script>
- <!-- hexo injector body_end end --></body>
- </html>
|