title: 使用metacell进行分群聚类 tags: [] id: '2035' categories:
f_QC_plot <- function(sce){
options(repr.plot.width = 12, repr.plot.height = 6)
print(Seurat::VlnPlot(sce, features = c("nFeature_RNA", "nCount_RNA", "percent.mt"), ncol = 3))
plot1 <- Seurat::FeatureScatter(sce, feature1 = "nCount_RNA", feature2 = "percent.mt")
plot2 <- Seurat::FeatureScatter(sce, feature1 = "nCount_RNA", feature2 = "nFeature_RNA")
plot1 + plot2
}
f_read10x <- function(sce, project='sce'){
sce <- Seurat::CreateSeuratObject(sce, project = project,
min.cells = 3, min.features = 200)
sce[["percent.mt"]] <- Seurat::PercentageFeatureSet(sce, pattern = "^MT-")
sce[["percent.rp"]] <- Seurat::PercentageFeatureSet(sce, pattern = "^RP[SL]")
sce <- subset(sce, nFeature_RNA >= quantile(nFeature_RNA, 0.025)
& nFeature_RNA <= quantile(nFeature_RNA, 0.975)
& nCount_RNA >= quantile(nCount_RNA, 0.025)
& nCount_RNA <= quantile(nCount_RNA, 0.975)
& percent.mt <= quantile(percent.mt, 0.975))
sce <- Seurat::NormalizeData(sce)
g2m_genes <- Seurat::CaseMatch(search=Seurat::cc.genes$g2m.genes,
match=rownames(sce))
s_genes <- Seurat::CaseMatch(search=Seurat::cc.genes$s.genes,
match=rownames(sce))
sce <- Seurat::CellCycleScoring(sce, g2m.features=g2m_genes, s.features=s_genes)
sce$CC.Difference <- sce$S.Score - sce$G2M.Score
sce <- sce[!grepl(pattern = "(^MT-^RP[SL])",x = rownames(sce)),]
sce <- Seurat::SCTransform(sce, vst.flavor = "v2",
vars.to.regress = c("CC.Difference", "percent.mt", "percent.rp"),
verbose = F)
sce
}
sce <- Seurat::Read10X('filtered_feature_bc_matrix')
sce <- f_read10x(sce, project = 'SRX8890106')
###### 构建metacell对象
## 初始化
# 设置存放数据的目录
if(!dir.exists("scdb")){dir.create("scdb")}
metacell::scdb_init("scdb", force_reinit=T)
# 设置存放图形的目录
if(!dir.exists("figs")){dir.create("figs")}
metacell::scfigs_init("figs")
## 提取高变基因
var.genes <- Seurat::VariableFeatures(sce)
var.genes <- structure(rep(1:length(var.genes)), names=var.genes)
var.genes <- metacell::gset_new_gset(sets = var.genes, desc = "seurat variable genes")
metacell::scdb_add_gset("SRX8890106", var.genes)
## 提取counts矩阵
mat <- Seurat::as.SingleCellExperiment(sce)
mat <- metacell::scm_import_sce_to_mat(mat)
metacell::scdb_add_mat("SRX8890106", mat)
## 构建平衡KNN图
metacell::mcell_add_cgraph_from_mat_bknn(mat_id = "SRX8890106",
gset_id = "SRX8890106",
graph_id = "SRX8890106_k100",
K = 100,
dsamp = F) # 20,000 cells之内不必抽样
## 共聚类
metacell::mcell_coclust_from_graph_resamp(coc_id = "SRX8890106_n1000", graph_id = "SRX8890106_k100",
min_mc_size = 20, p_resamp = 0.75, n_resamp=1000)
## 生成初级metacell
metacell::mcell_mc_from_coclust_balanced(coc_id = "SRX8890106_n1000", mat_id = "SRX8890106", mc_id = "SRX8890106",
K = 20, min_mc_size = 20, alpha = 2)
## 修剪metacell
metacell::mcell_plot_outlier_heatmap(mc_id = "SRX8890106", mat_id = "SRX8890106", T_lfc = 3)
metacell::mcell_mc_split_filt(new_mc_id = "SRX8890106", mc_id = "SRX8890106", mat_id = "SRX8890106", T_lfc = 3, plot_mats = T)
## 2D图展示Cells与MCs
metacell::mc_colorize_default('SRX8890106')
metacell::mcell_mc2d_force_knn(mc2d_id="SRX8890106", mc_id="SRX8890106", graph_id="SRX8890106_k100")
tgconfig::set_param("mcell_mc2d_height", 1000, "metacell")
tgconfig::set_param("mcell_mc2d_width", 1000, "metacell")
metacell::mcell_mc2d_plot(mc2d_id = "SRX8890106")
mc <- metacell::scdb_mc('SRX8890106')
sce$metacell <- 0
sce$metacell[names(mc@mc)] <- mc@mc
saveRDS(sce@meta.data, 'SRX8890106_meta.rds')