title: Seurat (十) 同群细胞在不同脑区的DEGs tags: [] id: '1302' categories:
library(Matrix)
library(Seurat)
library(plyr)
library(dplyr)
library(patchwork)
library(purrr)
library(ggplot2)
library(reshape2)
# 配置数据和mark基因表的路径
root_path = "~/zlliu/R_data/hBLA"
# 配置结果保存路径
output_path = "~/zlliu/R_output/21.11.03.boxplot"
if (!file.exists(output_path)){dir.create(output_path)}
# 设置工作目录,输出文件将保存在此目录下
setwd(output_path)
getwd()
f_image_output <- function(fileName, image, width=1920, height=1080, lc_pdf=T, lc_resolution=72){
if(lc_pdf){
width = width / lc_resolution
height = height / lc_resolution
pdf(paste(fileName, ".pdf", sep=""), width = width, height = height)
}else{
png(paste(fileName, ".png", sep=""), width = width, height = height)
}
print(image)
dev.off()
}
options(repr.plot.width=12, repr.plot.height=12)
options(ggrepel.max.overlaps = Inf)
f_icg_boxp <- function(lc_exp, lc_icg, lc_g, title = NULL){
lc_exp_L = melt(lc_exp[lc_icg, rownames(lc_g)])
lc_exp_L <- cbind(lc_exp_L, rownames(lc_exp_L))
colnames(lc_exp_L)=c('value','sample')
if(is.data.frame(lc_g)){
lc_exp_L$group = lc_g[[1]]
}else{
lc_exp_L$group = lc_g
}
p=ggplot(lc_exp_L,aes(x=group,y=value,fill=group))+geom_boxplot()
p=p+stat_summary(fun="mean",geom="point",shape=23,size=3,fill="red")
p=p+theme_set(theme_set(theme_bw(base_size=20)))
p=p+theme(text=element_text(face='bold'),axis.text.x=element_text(angle=30,hjust=1),axis.title=element_blank())
if (length(title) == 0){title = lc_icg}
p=p+ggtitle(title)+theme(plot.title = element_text(hjust = 0.5))
p
}
f_bp_gcg <- function(sObject, lc_groupN, lc_labelN, gG){
ss <- SplitObject(sObject, split.by = lc_groupN)
lc_N = names(ss)[1]
p = f_icg_boxp(ss[[lc_N]][['RNA']]@data, gG, ss[[lc_N]][[lc_labelN]], sprintf('%s in %s', gG, lc_N))
for (lc_N in names(ss)[-1]){
p = p + f_icg_boxp(ss[[lc_N]][['RNA']]@data, gG, ss[[lc_N]][[lc_labelN]], sprintf('%s in %s', gG, lc_N))
}
p + plot_layout(ncol = 3)
}
f_br_cluster_f <- function(sObject, lc_groupN){
lc_filter <- unlist(unique(sObject[[lc_groupN]]))
lc_filter <- lc_filter[!is.na(lc_filter)]
lc_filter
}
f_metadata_removeNA <- function(sObject, lc_groupN){
sObject@meta.data <- sObject@meta.data[colnames(sObject),]
sObject <- subset(x = sObject, !!sym(lc_groupN)%in%f_br_cluster_f(sObject, lc_groupN))
sObject
}
scRNA_split = readRDS("~/zlliu/R_output/21.09.21.SingleR/scRNA.rds")
scRNA_split <- f_metadata_removeNA(scRNA_split, 'Region')
f_ggplot2_ti <- function(p, title){
(p + ggtitle(title) + theme(plot.title = element_text(hjust = 0.5)))
}
f_sc_DoHeatmap <- function(sObject, significant_markers, lc_groupN = 'ident'){
if(nrow(significant_markers)<1){
print(significant_markers)
return()
}
significant_markers %>%
group_by(cluster) %>%
top_n(n = 10, wt = avg_log2FC) -> topn
if(nrow(topn)<1){
print(topn)
return()
}else{
pN <- paste0(sObject@project.name,'_',lc_groupN,"_significant_markers")
img = DoHeatmap(sObject, group.by=lc_groupN, features=topn$gene, disp.min=-1, disp.max=1) %>% f_ggplot2_ti(sObject@project.name)
f_image_output(pN, img, lc_pdf = F)
}
}
f_sc_degs <- function(sObject, lc_groupN){
pN <- paste0(sObject@project.name,'_',lc_groupN,"_sObject_markers.csv")
if(file.exists(pN)){
print(pN)
return()
}
Idents(sObject) <- sObject[[lc_groupN]]
sObject_markers <- FindAllMarkers(sObject, min.pct = 0.25, logfc.threshold = 0.25)
if(nrow(sObject_markers)<1 !('p_val_adj' %in% colnames(sObject_markers))){
print(sObject_markers)
return()
}
significant_markers <- subset(sObject_markers, subset = p_val_adj<0.05)
write.csv(sObject_markers, paste0(sObject@project.name,'_',lc_groupN,"_sObject_markers.csv"))
write.csv(significant_markers, paste0(sObject@project.name,'_',lc_groupN,"_significant_markers.csv"))
f_sc_DoHeatmap(sObject,significant_markers,lc_groupN)
}
f_sc_DoHeatmap_sp <- function(sObject, lc_labelN, lc_groupN){
ss <- SplitObject(sObject, split.by = lc_labelN)
for (lc_N in names(ss)){
sso <- ss[[lc_N]]
sso@project.name <- gsub('/', '.', lc_N)
f_sc_degs(sso, lc_groupN)
}
}
f_sc_DoHeatmap_sp(scRNA_split, 'hM1_hmca_class', 'Region')