title: 【学习】使用GATK4.0找SNP urlname: shi-yong-GATK-zhao-SNP date: 2023-09-24 18:49:18 index_img: https://api.limour.top/randomImg?d=2023-09-24 18:49:18
conda create -n sra_tools -c bioconda sra-tools
conda activate sra_tools
conda install -c conda-forge lftp -y
conda install -c conda-forge pigz -y # 或许换成 pbgzip 更好,此时将 -p 换成 -n 来指定线程数
conda install -c bioconda pbgzip -y
prefetch
# vdb-config -i # 设置 HTTP 代理
conda create -n GATK4 -c bioconda gatk4
conda activate GATK4
conda install -c bioconda samtools -y
conda install -c bioconda bwa -y
conda install -c bioconda pbgzip -y # 并行版bgzip,bgzip是修改过的gzip,更适合生信领域
conda install -c bioconda tabix -y # 操作VCF文件,与bgzip配套
# conda install -c bioconda fastqc -y # 改用fastp了
# conda install -c bioconda trimmomatic -y # 改用fastp了
conda install -c bioconda fastp -y
# conda install -c bioconda bcftools -y # 用于重命名染色体
# ln -s $CONDA_PREFIX/lib/libgsl.so $CONDA_PREFIX/lib/libgsl.so.25 # 无效,放弃
# conda create -n GATK4-VEP -c bioconda ensembl-vep -y # 根正苗红的突变注释软件,不懂有什么奇怪依赖,解析环境半天
BWA是DNA比对工具(不会跨外显子比对),STAR是RNA比对工具
NCBI上各物种的参考序列,可以找到RefSeq,比如Human是GCF_000001405
知道序号后可以到FTP上下载相应的genomic.fna.gz
文件
比如GCF_000001405,依次进入000/001/405
即可找到对应的文件
wget https://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/001/405/GCF_000001405.40_GRCh38.p14/GCF_000001405.40_GRCh38.p14_genomic.fna.gz -O GRCh38.p14.fna.gz
conda run -n sra_tools pigz -d GRCh38.p14.fna.gz # 得到 GRCh38.p14.fna
# 创建索引
samtools faidx GRCh38.p14.fna # 得到 GRCh38.p14.fna.fai
# 查看一段序列
samtools faidx GRCh38.p14.fna NC_000001.11:1000000-1000200
# 创建比对索引
bwa index GRCh38.p14.fna # 会自动在 bwtsw, is or rb2 三种算法中选择合适的
# 创建dict
gatk CreateSequenceDictionary -R GRCh38.p14.fna
最后得到的RefSeq目录结构如下
# conda create -n linux -c conda-forge tree
# conda run -n linux tree -f -h --du
[8.5G] .
├── [ 79K] ./GRCh38.p14.dict
├── [3.1G] ./GRCh38.p14.fna
├── [ 21K] ./GRCh38.p14.fna.amb
├── [ 90K] ./GRCh38.p14.fna.ann
├── [3.1G] ./GRCh38.p14.fna.bwt
├── [ 26K] ./GRCh38.p14.fna.fai
├── [786M] ./GRCh38.p14.fna.pac
└── [1.5G] ./GRCh38.p14.fna.sa
lftp ftp://gsapubftp-anonymous@ftp.broadinstitute.org/bundle/
,密码空,直接回车
下载和参考数据相对应的indels.hg38.vcf
wget https://ftp.ncbi.nlm.nih.gov/snp/latest_release/VCF/GCF_000001405.40.gz -O GRCh38.dbSNP.ncbi.vcf.gz
assembly_report.txt
在下载NCBI参考数据FTP目录下
wget https://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/001/405/GCF_000001405.40_GRCh38.p14/GCF_000001405.40_GRCh38.p14_assembly_report.txt -O GRCh38.p14_assembly_report.txt
grep -e '^[^#]' GRCh38.p14_assembly_report.txt | awk -F'\t' '{ print $NF, $7 }' | sed 's/\r / /g' > rename_file.txt
conda create -n something_fuck -c conda-forge mamba
conda activate something_fuck
mamba install -c bioconda bcftools
bcftools annotate --rename-chrs rename_file.txt -o Homo_sapiens_assembly38.known_indels.ncbi.vcf Homo_sapiens_assembly38.known_indels.vcf
bcftools annotate --rename-chrs rename_file.txt -o hapmap_3.3.hg38.ncbi.vcf hapmap_3.3.hg38.vcf
bcftools annotate --rename-chrs rename_file.txt -o Mills_and_1000G_gold_standard.indels.hg38.ncbi.vcf Mills_and_1000G_gold_standard.indels.hg38.vcf
conda run -n GATK4 pbgzip -n 4 *.ncbi.vcf # 似乎一次只压缩一个,多运行几次
nano knownSitesIndex.sh && chmod +x knownSitesIndex.sh
./knownSitesIndex.sh
#!/bin/bash
source activate GATK4
#设置knownSites数据存放目录
knownSites=/home/jovyan/upload/knownSites
for file in $knownSites/*.ncbi.vcf.gz
do
echo $file
gatk IndexFeatureFile \
-I $file
done
最后得到的knownSites目录结构如下
[ 25G] .
├── [ 25G] ./GRCh38.dbSNP.ncbi.vcf.gz
├── [4.2M] ./GRCh38.dbSNP.ncbi.vcf.gz.tbi
├── [ 79K] ./GRCh38.p14_assembly_report.txt
├── [ 61M] ./hapmap_3.3.hg38.ncbi.vcf.gz
├── [2.1M] ./hapmap_3.3.hg38.ncbi.vcf.gz.tbi
├── [ 58M] ./Homo_sapiens_assembly38.known_indels.ncbi.vcf.gz
├── [2.1M] ./Homo_sapiens_assembly38.known_indels.ncbi.vcf.gz.tbi
├── [ 20M] ./Mills_and_1000G_gold_standard.indels.hg38.ncbi.vcf.gz
├── [2.0M] ./Mills_and_1000G_gold_standard.indels.hg38.ncbi.vcf.gz.tbi
└── [ 23K] ./rename_file.txt
WGS的DNA测序数据
下载方式见SRA文件转FASTQ文件
也可以到ENA数据库上下载
conda run -n sra_tools prefetch --option-file SRR_Acc_List.txt
nano 11.sh && chmod +x 11.sh
./11.sh
#!/bin/bash
source activate sra_tools
#任务名
TASKN=SRX247249
#设置SRA根目录, pwd是当前目录
ROOTDIR=`pwd`
#设置rawData存放目录
rawData=/home/jovyan/upload/rawData/$TASKN
mkdir -p $rawData
cd $ROOTDIR
for file in `cat SRR_Acc_List.txt`
do
echo $file
mkdir $rawData/$file
cd $rawData/$file
fasterq-dump --split-3 $ROOTDIR/$file -e 6
pigz -p 6 *
done
nano qc.sh && chmod +x qc.sh
./qc.sh
#!/bin/bash
source activate GATK4
#任务名
TASKN=SRX247249
#设置rawData存放目录
rawData=/home/jovyan/upload/rawData/$TASKN
#设置qc结果的输出目录
QCDIR=/home/jovyan/upload/rawData/$TASKN"_fastqc"
mkdir -p $QCDIR
for file in $rawData/*
do
echo $file
SAMPLE=${file##*/}
echo $QCDIR"/"$SAMPLE
mkdir $QCDIR"/"$SAMPLE
fastqc -o $QCDIR"/"$SAMPLE --threads=6 `ls $rawData/$SAMPLE/*`
done
对于PE而言,正向和反向reads的测量过程是独立的,将当成两次SE来处理
最后的报告中:
Q20的碱基要在95%以上(最差不低于90%)
Q30要求大于85%(最差也不要低于80%)
对于人类来说,GC含量应该在40%左右
nano qc.sh && chmod +x qc.sh
./qc.sh
#!/bin/bash
source activate GATK4
#任务名
TASKN=SRX247249
#设置rawData存放目录
rawData=/home/jovyan/upload/rawData/$TASKN
#设置qc结果的输出目录
QCDIR=/home/jovyan/upload/rawData/$TASKN"_fastp"
mkdir -p $QCDIR
#设置cleanData的存放目录
CLEAN=/home/jovyan/upload/cleanData/$TASKN
mkdir -p $CLEAN
for file in $rawData/*
do
echo $file
SAMPLE=${file##*/}
echo $QCDIR"/"$SAMPLE
mkdir $QCDIR"/"$SAMPLE
echo $CLEAN"/"$SAMPLE
mkdir $CLEAN"/"$SAMPLE
cd $QCDIR"/"$SAMPLE
fastp -c -w 4 \
-o $CLEAN"/"$SAMPLE"/out.R1.fq.gz" \
-O $CLEAN"/"$SAMPLE"/out.R2.fq.gz" \
-h $QCDIR"/"$SAMPLE"/fastp.html" \
-j $QCDIR"/"$SAMPLE"/fastp.json" \
-i `ls $rawData/$SAMPLE/*_1.fastq.gz` \
-I `ls $rawData/$SAMPLE/*_2.fastq.gz`
done
最后得到的cleanData目录结构如下
[ 23G] .
├── [9.1G] ./SRR799559
│ ├── [4.4G] ./SRR799559/out.R1.fq.gz
│ └── [4.7G] ./SRR799559/out.R2.fq.gz
├── [7.0G] ./SRR799560
│ ├── [3.4G] ./SRR799560/out.R1.fq.gz
│ └── [3.5G] ./SRR799560/out.R2.fq.gz
└── [7.4G] ./SRR799561
├── [3.6G] ./SRR799561/out.R1.fq.gz
└── [3.8G] ./SRR799561/out.R2.fq.gz
nano bwa_and_markdup.sh && chmod +x bwa_and_markdup.sh
./bwa_and_markdup.sh
#!/bin/bash
source activate GATK4
#任务名
TASKN=SRX247249
#设置cleanData的存放目录
CLEAN=/home/jovyan/upload/cleanData/$TASKN
#设置RefSeq的存放目录
RefSeq=/home/jovyan/data/refseq/GRCh38.p14.fna
#设置Read Group信息,见 https://gatk.broadinstitute.org/hc/en-us/articles/360035890671-Read-groups
RGroup_PL=ILLUMINA # 所用的测序平台:ILLUMINA,SLX,SOLEXA,SOLID,454,LS454,COMPLETE,PACBIO,IONTORRENT,CAPILLARY,HELICOS或UNKNOWN。CG测序为COMPLETE
RGroup_SM=$TASKN # 样本ID,同一个样本可能有多个lane,此时用样本ID相关联
RGroup='PL:'$RGroup_PL'\tSM:'$RGroup_SM
#设置BAM的存放目录
BAM=/home/jovyan/upload/BAM/$TASKN
mkdir -p $BAM
for file in $CLEAN/*
do
echo $file
SAMPLE=${file##*/}
echo $BAM"/"$SAMPLE
mkdir $BAM"/"$SAMPLE
echo '@RG\tID:'$SAMPLE'\t'$RGroup
#1 比对
bwa mem -t 4 -M -R '@RG\tID:'$SAMPLE'\t'$RGroup $RefSeq `ls $CLEAN/$SAMPLE/*` \
| samtools view -Sb - > $BAM"/"$SAMPLE"/raw.bam"
#2 排序
samtools sort -@ 4 -m 4G -O bam -o $BAM"/"$SAMPLE"/sorted.bam" $BAM"/"$SAMPLE"/raw.bam"
rm $BAM"/"$SAMPLE"/raw.bam"
#3 标记PCR重复
gatk MarkDuplicates -I $BAM"/"$SAMPLE"/sorted.bam" \
-O $BAM"/"$SAMPLE"/sorted.markdup.bam" \
-M $BAM"/"$SAMPLE"/sorted.markdup_metrics.txt"
rm $BAM"/"$SAMPLE"/sorted.bam"
#4 创建比对索引文件
samtools index $BAM"/"$SAMPLE"/sorted.markdup.bam"
done
最后得到的BAM目录结构如下
[ 30G] .
├── [ 11G] ./SRR799559
│ ├── [ 11G] ./SRR799559/sorted.markdup.bam
│ ├── [4.5M] ./SRR799559/sorted.markdup.bam.bai
│ └── [3.7K] ./SRR799559/sorted.markdup_metrics.txt
├── [8.8G] ./SRR799560
│ ├── [8.8G] ./SRR799560/sorted.markdup.bam
│ ├── [3.9M] ./SRR799560/sorted.markdup.bam.bai
│ └── [3.7K] ./SRR799560/sorted.markdup_metrics.txt
└── [9.6G] ./SRR799561
├── [9.5G] ./SRR799561/sorted.markdup.bam
├── [4.1M] ./SRR799561/sorted.markdup.bam.bai
└── [3.7K] ./SRR799561/sorted.markdup_metrics.txt
nano merge.sh && chmod +x merge.sh
./merge.sh
#!/bin/bash
source activate GATK4
#任务名
TASKN=SRX247249
#设置BAM的存放目录
BAM=/home/jovyan/upload/BAM/$TASKN
#设置merge后的数据存放目录
MERGEDBAM=/home/jovyan/upload/merged/$TASKN/SAMPLE1
mkdir -p $MERGEDBAM
samtools merge $MERGEDBAM"/sorted.markdup.bam" \
`find "$BAM" -name "sorted.markdup.bam" -type f -exec readlink -f {} \;`
samtools index $MERGEDBAM"/sorted.markdup.bam"
最后得到的MERGED目录结构如下
[ 21G] .
└── [ 21G] ./SAMPLE1
├── [ 21G] ./SAMPLE1/sorted.markdup.bam
└── [6.8M] ./SAMPLE1/sorted.markdup.bam.bai
具体见黄树嘉博士的相关介绍
因为本文是GATK 4.0的HaplotypeCaller模块,自带局部重比对,故用到的时候再写
nano BQSR.sh && chmod +x BQSR.sh
./BQSR.sh
#!/bin/bash
source activate GATK4
#任务名
TASKN=SRX247249
#设置merged数据存放目录
MERGED=/home/jovyan/upload/merged/$TASKN
#设置RefSeq的存放目录
RefSeq=/home/jovyan/data/refseq/GRCh38.p14.fna
#设置knownSites数据存放目录
knownSites=/home/jovyan/upload/knownSites
knownSites=$(echo $(ls $knownSites/*.ncbi.vcf.gz | sed 's/^/--known-sites /' | tr '\n' ' '))
echo $knownSites
for file in $MERGED/*
do
echo $file
SAMPLE=${file##*/}
echo $MERGED"/"$SAMPLE
gatk BaseRecalibrator $knownSites \
-R $RefSeq \
-I $MERGED"/"$SAMPLE"/sorted.markdup.bam" \
-O $MERGED"/"$SAMPLE"/recal_data.table"
gatk ApplyBQSR \
-R $RefSeq \
-I $MERGED"/"$SAMPLE"/sorted.markdup.bam" \
--bqsr-recal-file $MERGED"/"$SAMPLE"/recal_data.table" \
-O $MERGED"/"$SAMPLE"/sorted.markdup.BQSR.bam"
samtools index $MERGED"/"$SAMPLE"/sorted.markdup.BQSR.bam"
done
最后得到的MERGED目录结构如下
[ 54G] .
└── [ 54G] ./SAMPLE1
├── [2.5M] ./SAMPLE1/recal_data.table
├── [ 21G] ./SAMPLE1/sorted.markdup.bam
├── [6.8M] ./SAMPLE1/sorted.markdup.bam.bai
├── [8.8M] ./SAMPLE1/sorted.markdup.BQSR.bai
├── [ 33G] ./SAMPLE1/sorted.markdup.BQSR.bam
└── [7.6M] ./SAMPLE1/sorted.markdup.BQSR.bam.bai
nano HaplotypeCaller.sh && chmod +x HaplotypeCaller.sh
./HaplotypeCaller.sh
#!/bin/bash
source activate GATK4
#任务名
TASKN=SRX247249
#设置BQSR数据存放目录
MERGED=/home/jovyan/upload/merged/$TASKN
#设置RefSeq的存放目录
RefSeq=/home/jovyan/data/refseq/GRCh38.p14.fna
for file in $MERGED/*
do
echo $file
SAMPLE=${file##*/}
echo $MERGED"/"$SAMPLE
gatk --java-options "-Xmx4g" HaplotypeCaller -ERC GVCF \
-R $RefSeq \
-I $MERGED"/"$SAMPLE"/sorted.markdup.BQSR.bam" \
-O $MERGED"/"$SAMPLE"/HC.g.vcf.gz"
done
VCFPATH=$MERGED'/SAMPLE1'
nano CombineGVCFs.sh && chmod +x CombineGVCFs.sh
./CombineGVCFs.sh
#!/bin/bash
source activate GATK4
#任务名
TASKN=SRX247249
#设置BQSR数据存放目录
MERGED=/home/jovyan/upload/merged/$TASKN
#设置RefSeq的存放目录
RefSeq=/home/jovyan/data/refseq/GRCh38.p14.fna
#设置最后输出的路径
VCFPATH=/home/jovyan/upload/VCF/$TASKN
mkdir -p $VCFPATH
variant=$(echo $(ls $MERGED/*/HC.g.vcf.gz | sed 's/^/--variant /' | tr '\n' ' '))
echo $variant
gatk CombineGVCFs $$variant \
-R $RefSeq \
-O $VCFPATH'/HC.g.vcf.gz'
nano GenotypeGVCFs.sh && chmod +x GenotypeGVCFs.sh
./GenotypeGVCFs.sh
#!/bin/bash
source activate GATK4
#任务名
TASKN=SRX247249
#设置BQSR数据存放目录
MERGED=/home/jovyan/upload/merged/$TASKN
#设置RefSeq的存放目录
RefSeq=/home/jovyan/data/refseq/GRCh38.p14.fna
#设置最后输出的路径
VCFPATH=$MERGED'/SAMPLE1'
mkdir -p $VCFPATH
gatk --java-options "-Xmx4g" GenotypeGVCFs \
-R $RefSeq \
-V $VCFPATH'/HC.g.vcf.gz' \
-O $VCFPATH'/HC.vcf.gz'
最后得到的结果如下
├── [6.8G] ./HC.g.vcf.gz
├── [5.0M] ./HC.g.vcf.gz.tbi
├── [127M] ./HC.vcf.gz
├── [2.0M] ./HC.vcf.gz.tbi
nano VQSR.sh && chmod +x VQSR.sh
./VQSR.sh
#!/bin/bash
source activate GATK4
#任务名
TASKN=SRX247249
#设置BQSR数据存放目录
MERGED=/home/jovyan/upload/merged/$TASKN
#设置RefSeq的存放目录
RefSeq=/home/jovyan/data/refseq/GRCh38.p14.fna
#设置最后输出的路径
VCFPATH=$MERGED'/SAMPLE1'
#设置knownSites数据存放目录
knownSites=/home/jovyan/upload/knownSites
gatk VariantRecalibrator \
-R $RefSeq \
-V $VCFPATH'/HC.vcf.gz' \
--resource:hapmap,known=false,training=true,truth=true,prior=15.0 $knownSites/hapmap_3.3.hg38.ncbi.vcf.gz \
--resource:dbsnp,known=true,training=false,truth=false,prior=2.0 $knownSites/GRCh38.dbSNP.ncbi.vcf.gz \
-an QD -an MQ -an MQRankSum -an ReadPosRankSum -an FS -an SOR \
-mode SNP \
-O $VCFPATH/snp.recal \
--tranches-file $VCFPATH/snp.tranches \
--rscript-file $VCFPATH/snp.plots.R
gatk ApplyVQSR \
-R $RefSeq \
-V $VCFPATH'/HC.vcf.gz' \
-O $VCFPATH'/snp.VQSR.vcf.gz' \
--truth-sensitivity-filter-level 99.0 \
--tranches-file $VCFPATH/snp.tranches \
--recal-file $VCFPATH/snp.recal \
-mode SNP
gatk VariantRecalibrator \
-R $RefSeq \
-V $VCFPATH'/snp.VQSR.vcf.gz' \
--resource:dbindel,known=true,training=false,truth=false,prior=2.0 $knownSites/Homo_sapiens_assembly38.known_indels.ncbi.vcf.gz \
--resource:mills,known=true,training=true,truth=true,prior=12.0 $knownSites/Mills_and_1000G_gold_standard.indels.hg38.ncbi.vcf.gz \
-an QD -an MQ -an MQRankSum -an ReadPosRankSum -an FS -an SOR \
-mode INDEL --max-gaussians 6 \
-O $VCFPATH/snp.indel.recal \
--tranches-file $VCFPATH/snp.indel.tranches \
--rscript-file $VCFPATH/snp.indel.plots.R
gatk ApplyVQSR \
-R $RefSeq \
-V $VCFPATH'/snp.VQSR.vcf.gz' \
-O $VCFPATH'/snp.indel.VQSR.vcf.gz' \
--truth-sensitivity-filter-level 99.0 \
--tranches-file $VCFPATH/snp.indel.tranches \
--recal-file $VCFPATH/snp.indel.recal \
-mode INDEL
最后得到的结果如下
├── [2.7M] ./snp.plots.R
├── [6.2M] ./snp.plots.R.pdf
├── [199M] ./snp.recal
├── [7.5M] ./snp.recal.idx
├── [ 584] ./snp.tranches
├── [7.5K] ./snp.tranches.pdf
├── [151M] ./snp.VQSR.vcf.gz
├── [2.0M] ./snp.VQSR.vcf.gz.tbi
├── [2.8M] ./snp.indel.plots.R
├── [6.2M] ./snp.indel.plots.R.pdf
├── [ 35M] ./snp.indel.recal
├── [256K] ./snp.indel.recal.idx
├── [ 595] ./snp.indel.tranches
├── [153M] ./snp.indel.VQSR.vcf.gz
├── [2.0M] ./snp.indel.VQSR.vcf.gz.tbi
SNP内容示例
# tabix snp.VQSR.vcf.gz NC_000001.11 | head -n 5
NC_000001.11 16378 . T C 35.32 VQSRTrancheSNP99.90to100.00 AC=2;AF=1.00;AN=2;DP=2;ExcessHet=0.0000;FS=0.000;MLEAC=1;MLEAF=0.500;MQ=20.00;QD=17.66;SOR=2.303;VQSLOD=-1.018e+01;culprit=MQ GT:AD:DP:GQ:PL 1/1:0,2:2:6:47,6,0
NC_000001.11 17020 . G A 59.32 VQSRTrancheSNP99.90to100.00 AC=2;AF=1.00;AN=2;DP=2;ExcessHet=0.0000;FS=0.000;MLEAC=1;MLEAF=0.500;MQ=31.66;QD=29.66;SOR=0.693;VQSLOD=-5.480e+00;culprit=MQ GT:AD:DP:GQ:PL 1/1:0,2:2:6:71,6,0
NC_000001.11 17385 . G A 60.32 VQSRTrancheSNP99.90to100.00 AC=2;AF=1.00;AN=2;DP=2;ExcessHet=0.0000;FS=0.000;MLEAC=1;MLEAF=0.500;MQ=32.28;QD=30.16;SOR=2.303;VQSLOD=-2.357e+00;culprit=MQ GT:AD:DP:GQ:PL 1/1:0,2:2:6:72,6,0
NC_000001.11 20254 . G A 64.64 VQSRTrancheSNP99.90to100.00 AC=1;AF=0.500;AN=2;BaseQRankSum=2.37;DP=8;ExcessHet=0.0000;FS=0.000;MLEAC=1;MLEAF=0.500;MQ=24.89;MQRankSum=-2.030e-01;QD=8.08;ReadPosRankSum=-1.611e+00;SOR=1.034;VQSLOD=-1.317e+01;culprit=MQ GT:AD:DP:GQ:PGT:PID:PL:PS 0|1:5,3:8:72:1|0:20250_T_C:72,0,126:20250
NC_000001.11 39230 . G A 83.64 VQSRTrancheSNP99.90to100.00 AC=1;AF=0.500;AN=2;BaseQRankSum=-1.078e+00;DP=15;ExcessHet=0.0000;FS=0.000;MLEAC=1;MLEAF=0.500;MQ=26.72;MQRankSum=2.20;QD=5.58;ReadPosRankSum=-1.917e+00;SOR=1.022;VQSLOD=-1.362e+01;culprit=MQ GT:AD:DP:GQ:PL 0/1:10,5:15:91:91,0,239
sudo docker pull ensemblorg/ensembl-vep
sudo docker run --rm -t -i -v ~/upload:/data:z ensemblorg/ensembl-vep pwd
sudo docker run --rm -t -i -v ~/upload:/data:z ensemblorg/ensembl-vep ls -al /opt/vep/
sudo mkdir -p ~/upload/vep && sudo chmod 777 ~/upload/vep
sudo docker run --rm -t -i -v ~/upload:/data:z -v ~/upload/vep:/opt/vep/.vep:z ensemblorg/ensembl-vep INSTALL.pl
# sudo docker run --rm -t -i -v ~/upload:/data:Z ensemblorg/ensembl-vep cat INSTALL.pl > INSTALL.pl
# 自行分析 INSTALL.pl,构造下载后的结构,以下是104版本的
# 太慢了,手动下载,请各显神通,下载地址来自上一步的输出
wget https://ftp.ensembl.org/pub/release-104/variation/indexed_vep_cache/homo_sapiens_vep_104_GRCh38.tar.gz -O ~/upload/vep
tar -zxvf homo_sapiens_vep_104_GRCh38.tar.gz
mkdir -p ~/upload/VEP/SRX247249 && chmod -R 777 ~/upload/VEP/SRX247249
# mv ~/data/refseq ~/upload
# chmod -R 777 ~/upload/refseq
# chmod -R 777 ~/upload/vep
# chmod -R 777 ~/upload/merged/SRX247249
sudo docker run --rm -t -i -v ~/upload:/data:z ensemblorg/ensembl-vep \
vep --fasta /data/refseq/GRCh38.p14.fna \
--format vcf --vcf --fork 4 --hgvs --force_overwrite --everything \
--offline --dir_cache /data/vep \
-i /data/merged/SRX247249/SAMPLE1/snp.indel.VQSR.vcf.gz \
-o /data/merged/SRX247249/SAMPLE1/snp.indel.VQSR.VEP.vcf
# sudo chmod 777 ~/upload/merged/SRX247249/SAMPLE1/snp.indel.VQSR.VEP.vcf
# pbgzip -n 4 snp.indel.VQSR.VEP.vcf
# tabix -p vcf snp.indel.VQSR.VEP.vcf.gz
最后得到的结果如下
├── [346M] ./snp.indel.VQSR.VEP.vcf.gz
├── [210K] ./snp.indel.VQSR.VEP.vcf.gz_summary.html
├── [1.6M] ./snp.indel.VQSR.VEP.vcf.gz.tbi
├── [8.2K] ./snp.indel.VQSR.VEP.vcf.gz_warnings.txt
# tabix snp.indel.VQSR.VEP.vcf.gz NC_000001.11 | head -n 2
NC_000001.11 16378 . T C 35.32 VQSRTrancheSNP99.90to100.00 AC=2;AF=1.00;AN=2;DP=2;ExcessHet=0.0000;FS=0.000;MLEAC=1;MLEAF=0.500;MQ=20.00;QD=17.66;SOR=2.303;VQSLOD=-1.018e+01;culprit=MQ;CSQ=C|downstream_gene_variant|MODIFIER|DDX11L1|ENSG00000223972|Transcript|ENST00000450305|transcribed_unprocessed_pseudogene||||||||||rs148220436|2708|1||SNV|HGNC|HGNC:37102|YES||||||||||||||||||||||||||||||||||||||||||||,C|downstream_gene_variant|MODIFIER|DDX11L1|ENSG00000223972|Transcript|ENST00000456328|processed_transcript||||||||||rs148220436|1969|1||SNV|HGNC|HGNC:37102||||1|||||||||||||||||||||||||||||||||||||||||,C|intron_variant&non_coding_transcript_variant|MODIFIER|WASH7P|ENSG00000227232|Transcript|ENST00000488147|unprocessed_pseudogene||8/10|ENST00000488147.1:n.1067+229A>G|||||||rs148220436||-1||SNV|HGNC|HGNC:38034|YES||||||||||||||||||||||||||||||||||||||||||||,C|downstream_gene_variant|MODIFIER|MIR6859-1|ENSG00000278267|Transcript|ENST00000619216|miRNA||||||||||rs148220436|991|-1||SNV|HGNC|HGNC:50039|YES||||||||||||||||||||||||||||||||||||||||||||,C|regulatory_region_variant|MODIFIER|||RegulatoryFeature|ENSR00000344266|CTCF_binding_site||||||||||rs148220436||||SNV|||||||||||||||||||||||||||||||||||||||||||||||,C|regulatory_region_variant|MODIFIER|||RegulatoryFeature|ENSR00001164745|promoter_flanking_region||||||||||rs148220436||||SNV||||||||||||||||||||||||||||||||||||||||||||||| GT:AD:DP:GQ:PL 1/1:0,2:2:6:47,6,0
NC_000001.11 17020 . G A 59.32 VQSRTrancheSNP99.90to100.00 AC=2;AF=1.00;AN=2;DP=2;ExcessHet=0.0000;FS=0.000;MLEAC=1;MLEAF=0.500;MQ=31.66;QD=29.66;SOR=0.693;VQSLOD=-5.480e+00;culprit=MQ;CSQ=A|downstream_gene_variant|MODIFIER|DDX11L1|ENSG00000223972|Transcript|ENST00000450305|transcribed_unprocessed_pseudogene||||||||||rs199740902|3350|1||SNV|HGNC|HGNC:37102|YES||||||||||||||||||||||||||||||||||||||||||||,A|downstream_gene_variant|MODIFIER|DDX11L1|ENSG00000223972|Transcript|ENST00000456328|processed_transcript||||||||||rs199740902|2611|1||SNV|HGNC|HGNC:37102||||1|||||||||||||||||||||||||||||||||||||||||,A|non_coding_transcript_exon_variant|MODIFIER|WASH7P|ENSG00000227232|Transcript|ENST00000488147|unprocessed_pseudogene|7/11||ENST00000488147.1:n.746C>T||746|||||rs199740902||-1||SNV|HGNC|HGNC:38034|YES||||||||||||||||||||||||||||||||||||||||||||,A|downstream_gene_variant|MODIFIER|MIR6859-1|ENSG00000278267|Transcript|ENST00000619216|miRNA||||||||||rs199740902|349|-1||SNV|HGNC|HGNC:50039|YES|||||||||||||||||||||||||||||||||||||||||||| GT:AD:DP:GQ:PL 1/1:0,2:2:6:71,6,0