2023-10-14-【学习】孟德尔随机化.md 17 KB


title: 【学习】孟德尔随机化 urlname: Mendelian-Randomization date: 2023-10-14 17:18:54 index_img: https://api.limour.top/randomImg?d=2023-10-14 17:18:54

tags: ['SNP', 'MR']

MR定义

孟德尔随机化是一种基于全基因组测序数据(GWAS数据),利用单核首酸多态性(SNPs)作为工具变量(IV),用于揭示因果关系的新型流行病学方法,相较于队列研究等观察性研究,暴露在出生前便已确定,较少受到反向因果及混杂因素的影响,因而能够有效减少偏倚。 RCT与MR的比较 MR的核心是运用遗传学数据作为桥梁,来探索某一暴露和某一结局之间的因果关联。与RCT将参与者随机分配到试验组或对照组类似,MR研究基于影响危险因素的一个或多个等位基因,对参与基因进行"随机化"(自然的随机化),以确定这些遗传变异的携带者与非携带者相比,是否具有不同的疾病发生风险,因此,孟德尔随机化可以被认为类似于"自然的随机对照试验"MR的相关术语

理论假设

  1. the variant is associated with the exposure
  2. the variant is not associated with the outcome via a confounding pathway
  3. the variant does not affect the outcome directly, only possibly indirectly via the exposure

孟德尔随机化框架的有向无环图表示

  1. 关联性假设:变异与暴露有关
  2. 独立性假设:变异与结果之间没有通过混杂途径相关
  3. 排他性假设:变异不直接影响结果,只可能通过暴露途径间接影响
  • 关联性假设:p值,F统计量,R^2
  • 排他性假设:与结局的相关性计算时,p值要大于0.05
  • MR-Egger回归相比线性回归可以弱化对排他性假设的要求

    适用范围

  • 不确定先有鸡还是先有蛋,比如,到底是抑郁导致肺癌还是肺癌导致了抑郁?

  • 暴露因素难以测量,或者花费昂贵。例如,水溶性维生素等生物标志物的检测金标准可能成本太高,大样本无法承受,或者空腹血糖的测量需要隔夜空腹,可能不现实。

  • 暴露与结局数据来自同一人群,且不存在或存在少量可接受范围内的样本重叠

    配置环境

  • 基础编程环境

  • GitHub 下载加速

  • 可能需要用到的加速服务

    conda create -n MR -c conda-forge r-devtools -y
    conda activate MR
    conda install -c conda-forge r-irkernel -y
    Rscript -e "IRkernel::installspec(name='MR', displayname='MR')"
    # Rscript -e "usethis::edit_r_environ()" # 设置 GITHUB_PAT
    # nano ~/.Renviron # MRCIEU 真是超喜欢GITHUB,要访问一万次 api.github.com
    conda install -c conda-forge r-rmarkdown -y
    conda install -c conda-forge r-meta -y
    wget https://github.com/MRCIEU/TwoSampleMR/archive/refs/heads/master.zip -O TwoSampleMR.zip
    Rscript -e "devtools::install_local('TwoSampleMR.zip')"
    wget https://github.com/MRCIEU/MRInstruments/archive/refs/heads/master.zip -O MRInstruments.zip
    Rscript -e "devtools::install_local('MRInstruments.zip')"
    conda install -c conda-forge r-susier -y
    conda install -c bioconda bioconductor-variantannotation -y
    wget https://github.com/MRCIEU/gwasglue/archive/refs/heads/master.zip -O gwasglue.zip
    Rscript -e "devtools::install_local('gwasglue.zip')"
    # wget https://github.com/MRCIEU/genetics.binaRies/archive/refs/heads/master.zip -O genetics.binaRies.zip
    # Rscript -e "devtools::install_local('genetics.binaRies.zip')"
    conda install -c bioconda plink -y
    # whereis plink # /opt/conda/envs/MR/bin/plink
    Rscript -e 'install.packages("MendelianRandomization")'
    

    数据来源

  • 精神病学基因组:PGC

  • 社会科学遗传学:SSGAC

  • 大脑健康和疾病:CTG

  • MRCIEU汇总数据库:IEU

  • GWAS研究目录:NHGRI-EBI

  • 自己分析出数据

  • 更多相关网站

    一些参考数据

    wget http://fileserve.mrcieu.ac.uk/ld/1kg.v3.tgz
    tar -zxvf 1kg.v3.tgz
    # mkdir EUR && mv EUR.* EUR
    

    示例结局数据

  • 浏览器下载 ADHD2022_iPSYCH_deCODE_PGC.meta.gz

  • 上传到服务器

    # zcat ADHD2022_iPSYCH_deCODE_PGC.meta.gz | head
    CHR SNP BP A1 A2 FRQ_A_38691 FRQ_U_186843 INFO OR SE P Direction Nca Nco
    8 rs62513865 101592213 C T 0.925 0.937 0.981 0.99631 0.0175 0.8325 +---+++0-++-+ 38691 186843
    8 rs79643588 106973048 G A 0.91 0.917 1 1.00411 0.0159 0.7967 ++--++-+-+-++ 38691 186843
    8 rs17396518 108690829 T G 0.561 0.577 0.998 0.99611 0.0096 0.6876 --++-++??-+-- 37367 184388
    8 rs983166 108681675 A C 0.57 0.586 0.996 0.99491 0.0096 0.5956 --++-++++-+-- 38691 186843
    8 rs28842593 103044620 T C 0.839 0.836 0.982 0.98314 0.0135 0.2081 ----++0+??--+ 37504 184525
    8 rs7014597 104152280 G C 0.824 0.824 0.997 0.99950 0.0122 0.9679 +-++-+++++--- 38691 186843
    8 rs3134156 100479917 T C 0.841 0.833 0.997 0.98866 0.0128 0.3762 -+----+--++-- 38691 186843
    8 rs6980591 103144592 A C 0.783 0.79 1 1.01106 0.0108 0.3075 ++-++---+++++ 38691 186843
    8 rs72670434 108166508 A T 0.642 0.623 0.983 1.00672 0.0103 0.5171 +++-+++--+++- 38691 186843
    
    CHR Chromosome (hg19)
    SNP Marker name
    BP Base pair location (hg19)
    A1 Reference allele for OR (may or may not be minor allele)
    A2 Alternative allele
    FRQ_A_38691 allele frequency of A1 in 38,691 ADHD cases
    FRQ_U_186843 allele frequency of A1 in 38,691 controls
    INFO Imputation information score (the reported imputation INFO score is a weighted average across the
    cohorts contributing to the meta-analysis for that variant)
    OR Odds ratio for the effect of the A1 allele
    SE Standard error of the log(OR)
    P P-value for association test in the meta-analysis
    Direction direction of effect in the included cohorts
    Nca number of cases with variant information
    Nco number of controls with variant information
    

    其中SNP,Effect allele,Beta(OR),SE,P这五列是必须的。遇到没有提供EAF的数据,可以匹配千人基因组数据的EAFget_eaf_from_1000G

    示例暴露数据

    wget -c https://gwas.mrcieu.ac.uk/files/ieu-a-2/ieu-a-2.vcf.gz
    
    VCF_dat = VariantAnnotation::readVcf('~/upload/GWAS/IEU/ieu-a-2.vcf.gz')
    exp_dat = gwasglue::gwasvcf_to_TwoSampleMR(vcf = VCF_dat)
    saveRDS(file = 'ieu-a-2.exp_dat', exp_dat)
    exp_dat = subset(exp_dat, pval.exposure < 5e-08) # 关联性假设
    # 去除连锁不平衡
    # exp_dat = TwoSampleMR::clump_data(dat = exp_dat, clump_kb = 10000, clump_r2 = 0.001) # MRCIEU太喜欢用cloud api了
    fix_ld_clump_local = function (dat, tempfile, clump_kb, clump_r2, clump_p, bfile, plink_bin) {
    shell <- ifelse(Sys.info()["sysname"] == "Windows", "cmd", 
        "sh")
    write.table(data.frame(SNP = dat[["rsid"]], P = dat[["pval"]]), 
        file = tempfile, row.names = F, col.names = T, quote = F)
    fun2 <- paste0(shQuote(plink_bin, type = shell), " --bfile ", 
        shQuote(bfile, type = shell), " --clump ", shQuote(tempfile, 
            type = shell), " --clump-p1 ", clump_p, " --clump-r2 ", 
        clump_r2, " --clump-kb ", clump_kb, " --out ", shQuote(tempfile, 
            type = shell))
    print(fun2)
    system(fun2)
    res <- read.table(paste(tempfile, ".clumped", sep = ""), header = T)
    unlink(paste(tempfile, "*", sep = ""))
    y <- subset(dat, !dat[["rsid"]] %in% res[["SNP"]])
    if (nrow(y) > 0) {
        message("Removing ", length(y[["rsid"]]), " of ", nrow(dat), 
            " variants due to LD with other variants or absence from LD reference panel")
    }
    return(subset(dat, dat[["rsid"]] %in% res[["SNP"]]))
    }
    fuck = fix_ld_clump_local(
    dat = dplyr::tibble(rsid=exp_dat$SNP, pval=exp_dat$pval.exposure),
    tempfile = file.path(getwd(),'tmp.ld_clump.exp_dat'),
    clump_kb = 10000, clump_r2 = 0.001, clump_p = 1,
    # pop = "EUR", # Super-population. Options are "EUR", "SAS", "EAS", "AFR", "AMR"
    plink_bin = '/opt/conda/envs/MR/bin/plink', # 千万别用什么 genetics.binaRies::get_plink_binary(),他们自己编译的文件有问题
    bfile = "/home/jovyan/upload/GWAS/ld/EUR" # 前缀,不是文件夹也不是文件
    )
    exp_dat_clumped = exp_dat[exp_dat$SNP %in% fuck$rsid,]
    saveRDS(file = 'ieu-a-2.exp_gwas', exp_dat_clumped)
    

    获取暴露数据

    自己的数据

    df_gwas <- data.frame(
    SNP = c("rs1", "rs2"),
    beta = c(1, 2),
    se = c(1, 2),
    effect_allele = c("A", "T")
    )
    head(df_gwas)
    exp_dat <- TwoSampleMR::format_data(df_gwas, type = "exposure")
    

    gwas_catalog

    df_gwas <-
    subset(MRInstruments::gwas_catalog,
         grepl("Speliotes", Author) &
           Phenotype == "Body mass index")
    head(df_gwas)
    exp_dat <- TwoSampleMR::format_data(df_gwas)
    

    metab_qtls

    df_gwas <-
    subset(MRInstruments::metab_qtls,
        phenotype == "Ala"
    )
    head(df_gwas)
    exp_dat <- TwoSampleMR::format_metab_qtls(df_gwas)
    

    proteomic_qtls

    df_gwas <-
    subset(MRInstruments::proteomic_qtls,
        analyte == "ApoH"
    )
    head(df_gwas)
    exp_dat <- TwoSampleMR::format_proteomic_qtls(df_gwas)
    

    某个基因

    df_gwas <-
    subset(MRInstruments::gtex_eqtl,
        gene_name == "IRAK1BP1" & tissue == "Adipose Subcutaneous"
    )
    head(df_gwas)
    exp_dat <- TwoSampleMR::format_gtex_eqtl(df_gwas)
    

    某个性状的某个甲基化位点相关QTL

    df_gwas <-
    subset(MRInstruments::aries_mqtl,
        cpg == "cg25212131" & age == "Birth"
    )
    head(df_gwas)
    exp_dat <- TwoSampleMR::format_aries_mqtl(df_gwas)
    

    IEU的ID

    exp_gwas <- TwoSampleMR::extract_instruments(outcomes = 'ieu-a-2')
    head(exp_gwas)
    saveRDS(file = 'ieu-a-2.exp_gwas', exp_gwas) # 和自己从VCF开始经过clump得到的差不多
    

    UK_Biobank

    hyperten_tophits <- ieugwasr::tophits(id="ukb-b-12493", clump=0)
    hyperten_gwas <- dplyr::rename(hyperten_tophits, c(
    "SNP"="rsid",
    "effect_allele.exposure"="ea",
    "other_allele.exposure"="nea",
    "beta.exposure"="beta",
    "se.exposure"="se",
    "eaf.exposure"="eaf",
    "pval.exposure"="p",
    "N"="n"))
    fuck = fix_ld_clump_local(
    dat = dplyr::tibble(rsid=hyperten_gwas$SNP, pval=hyperten_gwas$pval.exposure),
    tempfile = file.path(getwd(),'tmp.ld_clump.exp_dat'),
    clump_kb = 10000, clump_r2 = 0.001, clump_p = 1,
    # pop = "EUR", # Super-population. Options are "EUR", "SAS", "EAS", "AFR", "AMR"
    plink_bin = '/opt/conda/envs/MR/bin/plink', # 千万别用什么 genetics.binaRies::get_plink_binary(),他们自己编译的文件有问题
    bfile = "/home/jovyan/upload/GWAS/ld/EUR" # 前缀,不是文件夹也不是文件
    )
    exp_dat_clumped = hyperten_gwas[hyperten_gwas$SNP %in% fuck$rsid,]
    MR_calc_r2_F(
    beta = exp_dat_clumped$beta.exposure, # Vector of Log odds ratio. beta = log(OR)
    eaf = exp_dat_clumped$eaf.exposure, # Vector of allele frequencies.
    N = exp_dat_clumped$N, # Array of sample sizes
    se = exp_dat_clumped$se.exposure # Vector of SE.
    ) # 取 F>10 的
    

    计算统计效力

    # 分类变量
    tmp_r2 =TwoSampleMR::get_r_from_lor(
    lor = exp_dat_clumped$beta.exposure, # Vector of Log odds ratio. beta = log(OR)
    af = exp_dat_clumped$eaf.exposure, # Vector of allele frequencies.
    ncase = exp_dat_clumped$ncase.exposure, # Vector of Number of cases. 
    ncontrol = exp_dat_clumped$ncontrol.exposure, # Vector of Number of controls. 
    prevalence = 1, # Vector of Disease prevalence in the population.
    )
    # 连续变量
    tmp_r2 =TwoSampleMR::get_r_from_pn(
    p = exp_dat_clumped$pval.exposure, # Array of pvals
    n = exp_dat_clumped$samplesize.exposure # Array of sample sizes
    )
    
    MR_calc_r2_F = function(beta, eaf, N, se){
    # https://doi.org/10.1038/s41467-020-14389-8
    # https://doi.org/10.1371/journal.pone.0120758
    r2 = (2 * (beta^2) * eaf * (1 - eaf)) /
            (2 * (beta^2) * eaf * (1 - eaf) +
            2 * N * eaf * (1 - eaf) * se^2)
    F = r2 * (N - 2) / (1 - r2)
    print(mean(F))
    return(dplyr::tibble(r2=r2, F=F))
    }
    MR_calc_r2_F(
    beta = exp_dat_clumped$beta.exposure, # Vector of Log odds ratio. beta = log(OR)
    eaf = exp_dat_clumped$eaf.exposure, # Vector of allele frequencies.
    N = exp_dat_clumped$samplesize.exposure, # Array of sample sizes
    se = exp_dat_clumped$se.exposure # Vector of SE.
    ) # 取 F>10 的
    

    获取结局数据

    IEU

    out_gwas = TwoSampleMR::extract_outcome_data(snps = exp_gwas$SNP, outcomes = 'ieu-a-7')
    

    UK_Biobank

    anxiety_hyperten_liberal <- TwoSampleMR::extract_outcome_data(snps = exp_dat_clumped$SNP, outcomes = "ukb-b-11311")
    

    PGC的示例

    df_gwas = read.table(gzfile('~/upload/GWAS/PGC/ADHD2022_iPSYCH_deCODE_PGC.meta.gz'), header = T)
    head(df_gwas)
    df_gwas = df_gwas[df_gwas$SNP %in% exp_gwas$SNP,]
    out_gwas = data.frame(
    SNP = df_gwas$SNP,
    chr = as.character(df_gwas$CHR),
    pos = df_gwas$BP,
    beta.outcome = log(df_gwas$OR),
    se.outcome = df_gwas$SE,
    samplesize.outcome = df_gwas$Nca + df_gwas$Nco,
    pval.outcome = df_gwas$P,
    eaf.outcome = with(df_gwas, (FRQ_A_38691*Nca+FRQ_U_186843*Nco)/(Nca+Nco)),
    effect_allele.outcome = df_gwas$A1,
    other_allele.outcome = df_gwas$A2,
    outcome = 'ADHD',
    id.outcome = 'ADHD2022_iPSYCH_deCODE_PGC'    
    )
    out_gwas = subset(out_gwas, pval.outcome > 5e-08) # 排他性假设
    

附加 代理SNP

一部分暴露的SNPs在结局中找不到,可以找和这部分SNPs连锁不平衡的SNPs来代替。相关网站:snipa

Harmonization

  • 将Exposure-SNP及Outcome-SNP等位基因方向协同
  • 根据EAF大小,剔除不能判断方向的回文SNP
  • 剔除incompatible SNP

    dat <- TwoSampleMR::harmonise_data(
    exposure_dat = exp_gwas, 
    outcome_dat = out_gwas
    )
    

    附加 一键报告

    TwoSampleMR::mr_report(dat, output_type = "md")
    

    MR分析

    回归分析

    TwoSampleMR::mr_method_list() # 查看mr支持的MR分析方法
    mr_regression = TwoSampleMR::mr(dat, method_list = c('mr_ivw', 'mr_egger_regression', 'mr_weighted_median'))
    mr_regression_or = TwoSampleMR::generate_odds_ratios(mr_res = mr_regression) # 分类变量
    {pdf(file = 'MR.BMIvsADHD.plot.pdf', width = 6, height = 6); # 导出 PDF 开始
    print(TwoSampleMR::mr_scatter_plot(mr_results = mr_regression, dat = dat)); # 返回的是一个ggplot2对象
    dev.off()} # 导出 PDF 结束
    

    mr_scatter_plot

    异质性检测

  • 有异质性用随机效应模型ivw,无异质性用固定效应模型(也可以用随机效应模型,两者结果一致)

  • 异质性可能带来多效性,如果没有多效性,则可以说异质性没有带来多效性

    TwoSampleMR::mr_heterogeneity(dat) # ivw的 Q_pval < 0.05 则说明有异质性
    heterogeneity_presso = TwoSampleMR::run_mr_presso(dat, NbDistribution = 3000) # NbDistribution越高分辨率越高,找不到离群的SNP时需要提高
    heterogeneity_presso[[1]]$`MR-PRESSO results`$`Global Test`$Pvalue # < 0.05 说明有异质性
    heterogeneity_presso[[1]]$`MR-PRESSO results`$`Distortion Test`$`Outliers Indices` # 显示离群的SNP,将其剔除后重新分析
    

    水平多效性

  • P < 0.05 说明不满足独立性假设,建议放弃继续做这个课题

  • P < 0.05 拒绝了截距为0的假设,说明SNP效应为0时依然有影响(截距存在),有其他因素在起作用

    TwoSampleMR::mr_pleiotropy_test(dat)
    

    敏感性分析

  • Leave-one-out analysis

  • 所有结果都不应该存在跨过0的情况,否则说明结果不稳定,不再能说明因果关系

    mr_loo <- TwoSampleMR::mr_leaveoneout(dat)
    {pdf(file = 'MR.BMIvsADHD.leaveoneout.plot.pdf', width = 6, height = 6); # 导出 PDF 开始
    print(TwoSampleMR::mr_leaveoneout_plot(leaveoneout_results = mr_loo)); # 返回的是一个ggplot2对象
    dev.off()} # 导出 PDF 结束
    

    单SNP分析

  • 对每个暴露-结果组合进行多次分析,每次使用不同的单 SNP 进行分析

    mr_res_single <- TwoSampleMR::mr_singlesnp(dat)
    TwoSampleMR::mr_funnel_plot(mr_res_single)
    TwoSampleMR::mr_forest_plot(mr_res_single)
    

    方向性检测

    TwoSampleMR::directionality_test(dat) # TRUE表示确实是暴露导致了结果
    

    附加 稳健回归

    dat2 <- TwoSampleMR::dat_to_MRInput(dat)
    mr_ivw_robust <- MendelianRandomization::mr_ivw(dat2[[1]], model= "default", # “random”指的就是随机效应模型,“fixed”指的是固定效应模型
                                             robust = TRUE, penalized = TRUE,correl = FALSE, # 参数penalized代表下调异常值的权重
                                             weights ="simple", psi = 0,distribution = "normal",alpha = 0.05)
    

    附加 绘制森林图

  • 美化森林图

附加 计算Power