-ji-lu--zai--Slurm--ping-tai-de-GPU-ji-qun-shang-shi-yong--Pytorch.html 56 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742
  1. <!DOCTYPE html>
  2. <html lang="en" data-default-color-scheme=auto>
  3. <head><!-- hexo injector head_begin start -->
  4. <script defer src="https://api.limour.top/vue/0d2f95c1-755d-436b-adf8-eee12a80ed32/script.js"></script>
  5. <!-- hexo injector head_begin end -->
  6. <meta charset="UTF-8">
  7. <link rel="apple-touch-icon" sizes="76x76" href="https://img.limour.top/2023/08/29/64ee07361815a.webp">
  8. <link rel="icon" href="https://img.limour.top/2023/08/29/64ee07361815a.webp">
  9. <meta name="viewport" content="width=device-width, initial-scale=1.0, maximum-scale=5.0, shrink-to-fit=no">
  10. <meta http-equiv="x-ua-compatible" content="ie=edge">
  11. <meta name="theme-color" content="#2f4154">
  12. <meta name="author" content="Limour">
  13. <meta name="keywords" content="">
  14. <meta name="description" content="更新:不用编译了,直接装最新版就行,cuda 是可以兼容低版本驱动的,cuda-compat 似乎可以不装。之前运行检测失败是因为 HPC 上的环境变量没有指定驱动的 bin 和 lib 的路径。 先说结论,没有 root 权限的 HPC,千万不要想着用最新版本的 pytorch。自己编译也不行,因为已经不支持 cuda11.7 以下的版本了,而没有">
  15. <title>【记录】在 Slurm 平台的GPU集群上使用 Pytorch - Limour&#39;s Blog</title>
  16. <link rel="stylesheet" href="https://jscdn.limour.top/npm/bootstrap@4.6.1/dist/css/bootstrap.min.css" />
  17. <link rel="stylesheet" href="https://jscdn.limour.top/npm/github-markdown-css@4.0.0/github-markdown.min.css" />
  18. <link rel="stylesheet" href="https://jscdn.limour.top/npm/hint.css@2.7.0/hint.min.css" />
  19. <!-- 主题依赖的图标库,不要自行修改 -->
  20. <!-- Do not modify the link that theme dependent icons -->
  21. <link rel="stylesheet" href="//at.alicdn.com/t/c/font_1749284_5i9bdhy70f8.css">
  22. <link rel="stylesheet" href="//at.alicdn.com/t/font_1736178_lbnruvf0jn.css">
  23. <link rel="stylesheet" href="/css/main.css" />
  24. <link id="highlight-css" rel="stylesheet" href="/css/highlight.css" />
  25. <link id="highlight-css-dark" rel="stylesheet" href="/css/highlight-dark.css" />
  26. <link rel="stylesheet" href="/theme-inject/custom.css">
  27. <link rel="stylesheet" href="/theme-inject/iconfont.css">
  28. <script id="fluid-configs">
  29. var Fluid = window.Fluid || {};
  30. Fluid.ctx = Object.assign({}, Fluid.ctx)
  31. var CONFIG = {"hostname":"hexo.limour.top","root":"/","version":"1.9.8","typing":{"enable":false,"typeSpeed":70,"cursorChar":"_","loop":false,"scope":[]},"anchorjs":{"enable":true,"element":"h1,h2,h3,h4,h5,h6","placement":"left","visible":"hover","icon":"§"},"progressbar":{"enable":true,"height_px":3,"color":"#29d","options":{"showSpinner":false,"trickleSpeed":100}},"code_language":{"enable":true,"default":"TEXT"},"copy_btn":true,"image_caption":{"enable":true},"image_zoom":{"enable":false,"img_url_replace":["",""]},"toc":{"enable":true,"placement":"right","headingSelector":"h1,h2,h3,h4,h5,h6","collapseDepth":0},"lazyload":{"enable":true,"loading_img":"https://jscdn.limour.top/gh/Limour-dev/Sakurairo_Vision/load_svg/inload.svg","onlypost":false,"offset_factor":2},"web_analytics":{"enable":false,"follow_dnt":true,"baidu":null,"google":{"measurement_id":null},"tencent":{"sid":null,"cid":null},"leancloud":{"app_id":null,"app_key":null,"server_url":null,"path":"window.location.pathname","ignore_local":false},"umami":{"src":null,"website_id":null,"domains":null,"start_time":"2024-01-01T00:00:00.000Z","token":null,"api_server":null},"woyaola":null,"cnzz":null},"search_path":"/local-search.xml","include_content_in_search":true};
  32. if (CONFIG.web_analytics.follow_dnt) {
  33. var dntVal = navigator.doNotTrack || window.doNotTrack || navigator.msDoNotTrack;
  34. Fluid.ctx.dnt = dntVal && (dntVal.startsWith('1') || dntVal.startsWith('yes') || dntVal.startsWith('on'));
  35. }
  36. </script>
  37. <script src="/js/utils.js" ></script>
  38. <script src="/js/color-schema.js" ></script>
  39. <link rel="canonical" href="https://hexo.limour.top/-ji-lu--zai--Slurm--ping-tai-de-GPU-ji-qun-shang-shi-yong--Pytorch"/>
  40. <meta name="generator" content="Hexo 7.1.1"><link rel="alternate" href="/atom.xml" title="Limour's Blog" type="application/atom+xml">
  41. <link rel="alternate" href="/rss2.xml" title="Limour's Blog" type="application/rss+xml">
  42. </head>
  43. <body>
  44. <header>
  45. <div class="header-inner" style="height: 70vh;">
  46. <nav id="navbar" class="navbar fixed-top navbar-expand-lg navbar-dark scrolling-navbar">
  47. <div class="container">
  48. <a class="navbar-brand" href="/">
  49. <strong>Limour&#39;s Blog</strong>
  50. </a>
  51. <button id="navbar-toggler-btn" class="navbar-toggler" type="button" data-toggle="collapse"
  52. data-target="#navbarSupportedContent"
  53. aria-controls="navbarSupportedContent" aria-expanded="false" aria-label="Toggle navigation">
  54. <div class="animated-icon"><span></span><span></span><span></span></div>
  55. </button>
  56. <!-- Collapsible content -->
  57. <div class="collapse navbar-collapse" id="navbarSupportedContent">
  58. <ul class="navbar-nav ml-auto text-center">
  59. <li class="nav-item">
  60. <a class="nav-link" href="https://hexo.limour.top/" target="_self">
  61. <i class="iconfont icon-home-fill"></i>
  62. <span>Home</span>
  63. </a>
  64. </li>
  65. <li class="nav-item">
  66. <a class="nav-link" href="/archives/" target="_self">
  67. <i class="iconfont icon-archive-fill"></i>
  68. <span>Archive1</span>
  69. </a>
  70. </li>
  71. <li class="nav-item">
  72. <a class="nav-link" href="https://occdn.limour.top/archives/" target="_self">
  73. <i class="iconfont icon-archive-fill"></i>
  74. <span>Archive2</span>
  75. </a>
  76. </li>
  77. <li class="nav-item">
  78. <a class="nav-link" href="https://b.limour.top/archives/" target="_self">
  79. <i class="iconfont icon-archive-fill"></i>
  80. <span>Archive3</span>
  81. </a>
  82. </li>
  83. <li class="nav-item">
  84. <a class="nav-link" href="https://od.limour.top/" target="_self">
  85. <i class="iconfont icon-onedrive"></i>
  86. <span>Alist</span>
  87. </a>
  88. </li>
  89. <li class="nav-item">
  90. <a class="nav-link" href="https://orcid.org/0000-0001-8897-1685" target="_self">
  91. <i class="iconfont icon-orcid"></i>
  92. <span>Orcid</span>
  93. </a>
  94. </li>
  95. <li class="nav-item">
  96. <a class="nav-link" href="/links/" target="_self">
  97. <i class="iconfont icon-link-fill"></i>
  98. <span>Links</span>
  99. </a>
  100. </li>
  101. <li class="nav-item">
  102. <a class="nav-link" href="/atom.xml" target="_self">
  103. <i class="iconfont icon-rss"></i>
  104. <span>RSS</span>
  105. </a>
  106. </li>
  107. <li class="nav-item" id="search-btn">
  108. <a class="nav-link" target="_self" href="javascript:;" data-toggle="modal" data-target="#modalSearch" aria-label="Search">
  109. <i class="iconfont icon-search"></i>
  110. </a>
  111. </li>
  112. <li class="nav-item" id="color-toggle-btn">
  113. <a class="nav-link" target="_self" href="javascript:;" aria-label="Color Toggle">
  114. <i class="iconfont icon-dark" id="color-toggle-icon"></i>
  115. </a>
  116. </li>
  117. </ul>
  118. </div>
  119. </div>
  120. </nav>
  121. <div id="banner" class="banner" parallax=true
  122. style="background: url('https://img.limour.top/2023/08/29/64ee08e108638.webp') no-repeat center center; background-size: cover;">
  123. <div class="full-bg-img">
  124. <div class="mask flex-center" style="background-color: rgba(0, 0, 0, 0.3)">
  125. <div class="banner-text text-center fade-in-up">
  126. <div class="h2">
  127. <span id="subtitle">【记录】在 Slurm 平台的GPU集群上使用 Pytorch</span>
  128. </div>
  129. <div class="mt-3">
  130. <span class="post-meta mr-2">
  131. <i class="iconfont icon-author" aria-hidden="true"></i>
  132. Limour
  133. </span>
  134. <span class="post-meta">
  135. <i class="iconfont icon-date-fill" aria-hidden="true"></i>
  136. <time datetime="2023-09-06 20:24" pubdate>
  137. September 6, 2023 pm
  138. </time>
  139. </span>
  140. </div>
  141. <div class="mt-1">
  142. <span class="post-meta mr-2">
  143. <i class="iconfont icon-chart"></i>
  144. 1.9k words
  145. </span>
  146. <span class="post-meta mr-2">
  147. <i class="iconfont icon-clock-fill"></i>
  148. 16 mins
  149. </span>
  150. </div>
  151. </div>
  152. </div>
  153. </div>
  154. </div>
  155. </div>
  156. </header>
  157. <main>
  158. <div class="container-fluid nopadding-x">
  159. <div class="row nomargin-x">
  160. <div class="side-col d-none d-lg-block col-lg-2">
  161. </div>
  162. <div class="col-lg-8 nopadding-x-md">
  163. <div class="container nopadding-x-md" id="board-ctn">
  164. <div id="board">
  165. <article class="post-content mx-auto">
  166. <h1 id="seo-header">【记录】在 Slurm 平台的GPU集群上使用 Pytorch</h1>
  167. <p id="updated-time" class="note note-info" style="">
  168. Last updated on March 19, 2024 pm
  169. </p>
  170. <div class="markdown-body">
  171. <div class="note note-info">
  172. <p>更新:不用编译了,直接装最新版就行,cuda 是可以<a href="https://hexo.limour.top/go/#aHR0cHM6Ly9kb2NzLm52aWRpYS5jb20vZGVwbG95L2N1ZGEtY29tcGF0aWJpbGl0eS8jdXNlLXRoZS1yaWdodC1jb21wYXQtcGFja2FnZQ==" rel="noopener external nofollow noreferrer">兼容</a>低版本驱动的,cuda-compat 似乎可以不装。之前运行检测失败是因为 HPC 上的环境变量没有指定驱动的 bin 和 lib 的路径。</p>
  173. </div>
  174. <p>先说结论,没有 root 权限的 HPC,千万不要想着用最新版本的 pytorch。自己编译也不行,因为已经不支持 cuda11.7 以下的版本了,而没有 root 权限,既改不了驱动,也装不了 cuda-compat,不要折腾了。</p>
  175. <h2 id="更换-conda">更换 conda</h2>
  176. <ul>
  177. <li>安装 <a href="/-ji-lu--an-zhuang-conda-bing-geng-huan-qing-hua-yuan">conda</a></li>
  178. </ul>
  179. <figure class="highlight bash"><table><tr><td class="gutter"><pre><span class="line">1</span><br><span class="line">2</span><br><span class="line">3</span><br><span class="line">4</span><br><span class="line">5</span><br><span class="line">6</span><br><span class="line">7</span><br></pre></td><td class="code"><pre><code class="hljs bash"><span class="hljs-comment"># 千万不要用系统提供的 conda</span><br><span class="hljs-comment"># 一定要自己重新 init 一个</span><br><span class="hljs-comment"># 因为除了自己的 home 目录会正确映射到集群的节点上</span><br><span class="hljs-comment"># 其他的目录很可能不正确</span><br><span class="hljs-built_in">source</span> ~/.bashrc<br>conda clean --all<br>conda install -y nano<br></code></pre></td></tr></table></figure>
  180. <h4 id="更换编译器">更换编译器</h4>
  181. <figure class="highlight bash"><table><tr><td class="gutter"><pre><span class="line">1</span><br><span class="line">2</span><br><span class="line">3</span><br><span class="line">4</span><br><span class="line">5</span><br><span class="line">6</span><br><span class="line">7</span><br><span class="line">8</span><br><span class="line">9</span><br><span class="line">10</span><br><span class="line">11</span><br><span class="line">12</span><br><span class="line">13</span><br><span class="line">14</span><br><span class="line">15</span><br><span class="line">16</span><br><span class="line">17</span><br><span class="line">18</span><br><span class="line">19</span><br></pre></td><td class="code"><pre><code class="hljs bash"><span class="hljs-meta">#!/bin/bash</span><br><br><span class="hljs-comment">### 设置该作业的作业名</span><br><span class="hljs-comment">#SBATCH --job-name=install-nvidia-gxx</span><br><br><span class="hljs-comment">### 指定该作业需要1个节点数</span><br><span class="hljs-comment">#SBATCH --nodes=1</span><br><br><span class="hljs-comment">### 每个节点所运行的进程数为1</span><br><span class="hljs-comment">#SBATCH --ntasks-per-node=1</span><br><br><span class="hljs-comment">### 程序的执行命令</span><br><span class="hljs-built_in">source</span> ~/.bashrc<br><span class="hljs-comment">## https://gist.github.com/ax3l/9489132 查看对应 nvcc 支持的 g++ 版本</span><br>conda create -y -n gcc -c conda-forge gcc=9.5.0<br><span class="hljs-built_in">source</span> activate gcc<br>conda install -c conda-forge gxx=9.5.0<br>gcc -v<br>g++ -v<br></code></pre></td></tr></table></figure>
  182. <figure class="highlight bash"><table><tr><td class="gutter"><pre><span class="line">1</span><br><span class="line">2</span><br><span class="line">3</span><br><span class="line">4</span><br><span class="line">5</span><br></pre></td><td class="code"><pre><code class="hljs bash"><span class="hljs-built_in">source</span> ~/.bashrc<br>conda run -n gcc whereis gcc<br><span class="hljs-comment"># ~/miniconda3/envs/gcc/bin/gcc</span><br>conda run -n gcc whereis g++<br><span class="hljs-comment"># ~/miniconda3/envs/gcc/bin/g++</span><br></code></pre></td></tr></table></figure>
  183. <h2 id="检测驱动版本">检测驱动版本</h2>
  184. <figure class="highlight bash"><table><tr><td class="gutter"><pre><span class="line">1</span><br><span class="line">2</span><br><span class="line">3</span><br><span class="line">4</span><br><span class="line">5</span><br><span class="line">6</span><br><span class="line">7</span><br><span class="line">8</span><br><span class="line">9</span><br><span class="line">10</span><br><span class="line">11</span><br><span class="line">12</span><br><span class="line">13</span><br><span class="line">14</span><br><span class="line">15</span><br><span class="line">16</span><br><span class="line">17</span><br><span class="line">18</span><br><span class="line">19</span><br><span class="line">20</span><br><span class="line">21</span><br><span class="line">22</span><br><span class="line">23</span><br><span class="line">24</span><br><span class="line">25</span><br><span class="line">26</span><br><span class="line">27</span><br><span class="line">28</span><br><span class="line">29</span><br><span class="line">30</span><br><span class="line">31</span><br><span class="line">32</span><br><span class="line">33</span><br><span class="line">34</span><br><span class="line">35</span><br></pre></td><td class="code"><pre><code class="hljs bash"><span class="hljs-meta">#!/bin/bash</span><br><br><span class="hljs-comment">### 设置该作业的作业名</span><br><span class="hljs-comment">#SBATCH --job-name=test-nvidia</span><br><br><span class="hljs-comment">### 指定该作业的运行分区,sinfo 获取分区列表</span><br><span class="hljs-comment">#SBATCH --partition=body</span><br><br><span class="hljs-comment">### 指定申请的节点</span><br><span class="hljs-comment">#SBATCH --nodelist=gpu4</span><br><br><span class="hljs-comment">### 排除指定的节点;</span><br><span class="hljs-comment">#SBATCH --exclude=gpu1</span><br><br><span class="hljs-comment">### 指定该作业需要1个节点数</span><br><span class="hljs-comment">#SBATCH --nodes=1</span><br><br><span class="hljs-comment">### 该作业需要1个CPU</span><br><span class="hljs-comment">#SBATCH --ntasks=1</span><br><br><span class="hljs-comment">### 申请1块GPU卡</span><br><span class="hljs-comment">#SBATCH --gres=gpu:1</span><br><br><span class="hljs-comment">### 作业最大的运行时间,超过时间后作业资源会被SLURM回收</span><br><span class="hljs-comment">#SBATCH --time=0:05:00</span><br><br><span class="hljs-comment">### 指定从哪个项目扣费。如果没有这条参数,则从个人账户扣费</span><br><span class="hljs-comment">#SBATCH --comment public_cluster</span><br><br><span class="hljs-comment">### 程序的执行命令</span><br><span class="hljs-built_in">source</span> ~/.bashrc<br>lspci | grep VGA<br><span class="hljs-comment">### modinfo nvidia</span><br><span class="hljs-built_in">cat</span> /proc/driver/nvidia/version <br><span class="hljs-comment">### /opt/app/cuda/11.2/extras/demo_suite/bandwidthTest</span><br></code></pre></td></tr></table></figure>
  185. <h2 id="安装-pytorch">安装 pytorch</h2>
  186. <h3 id="方式一-conda">方式一 conda</h3>
  187. <h4 id="新版本">新版本</h4>
  188. <figure class="highlight bash"><table><tr><td class="gutter"><pre><span class="line">1</span><br><span class="line">2</span><br><span class="line">3</span><br><span class="line">4</span><br><span class="line">5</span><br><span class="line">6</span><br><span class="line">7</span><br><span class="line">8</span><br><span class="line">9</span><br><span class="line">10</span><br><span class="line">11</span><br><span class="line">12</span><br><span class="line">13</span><br><span class="line">14</span><br><span class="line">15</span><br><span class="line">16</span><br><span class="line">17</span><br><span class="line">18</span><br><span class="line">19</span><br><span class="line">20</span><br><span class="line">21</span><br><span class="line">22</span><br><span class="line">23</span><br><span class="line">24</span><br><span class="line">25</span><br><span class="line">26</span><br><span class="line">27</span><br><span class="line">28</span><br><span class="line">29</span><br><span class="line">30</span><br><span class="line">31</span><br><span class="line">32</span><br></pre></td><td class="code"><pre><code class="hljs bash"><span class="hljs-meta">#!/bin/bash</span><br><br><span class="hljs-comment">### 设置该作业的作业名</span><br><span class="hljs-comment">#SBATCH --job-name=install-nvidia</span><br><br><span class="hljs-comment">### 指定该作业的运行分区,sinfo 获取分区列表</span><br><span class="hljs-comment">#SBATCH --partition=body</span><br><br><span class="hljs-comment">### 指定申请的节点</span><br><span class="hljs-comment">#SBATCH --nodelist=gpu4</span><br><br><span class="hljs-comment">### 排除指定的节点;</span><br><span class="hljs-comment">#SBATCH --exclude=gpu1</span><br><br><span class="hljs-comment">### 指定该作业需要1个节点数</span><br><span class="hljs-comment">#SBATCH --nodes=1</span><br><br><span class="hljs-comment">### 该作业需要1个CPU</span><br><span class="hljs-comment">#SBATCH --ntasks=1</span><br><br><span class="hljs-comment">### 申请1块GPU卡</span><br><span class="hljs-comment">#SBATCH --gres=gpu:1</span><br><br><span class="hljs-comment">### 指定从哪个项目扣费。如果没有这条参数,则从个人账户扣费</span><br><span class="hljs-comment">#SBATCH --comment public_cluster</span><br><br><span class="hljs-comment">### 程序的执行命令</span><br><span class="hljs-built_in">source</span> ~/.bashrc<br><span class="hljs-built_in">source</span> activate gcc<br>conda create -y -n gpu pytorch-cuda=11.8 -c pytorch -c nvidia<br>conda install -y -n gpu pytorch -c pytorch -c nvidia<br>conda install -y -n gpu torchvision torchaudio -c pytorch -c nvidia<br></code></pre></td></tr></table></figure>
  189. <h4 id="旧版本">旧版本</h4>
  190. <figure class="highlight bash"><table><tr><td class="gutter"><pre><span class="line">1</span><br><span class="line">2</span><br><span class="line">3</span><br><span class="line">4</span><br><span class="line">5</span><br><span class="line">6</span><br><span class="line">7</span><br><span class="line">8</span><br><span class="line">9</span><br><span class="line">10</span><br><span class="line">11</span><br><span class="line">12</span><br><span class="line">13</span><br><span class="line">14</span><br><span class="line">15</span><br><span class="line">16</span><br><span class="line">17</span><br><span class="line">18</span><br><span class="line">19</span><br><span class="line">20</span><br><span class="line">21</span><br><span class="line">22</span><br><span class="line">23</span><br><span class="line">24</span><br><span class="line">25</span><br><span class="line">26</span><br><span class="line">27</span><br><span class="line">28</span><br><span class="line">29</span><br><span class="line">30</span><br></pre></td><td class="code"><pre><code class="hljs bash"><span class="hljs-meta">#!/bin/bash</span><br><br><span class="hljs-comment">### 设置该作业的作业名</span><br><span class="hljs-comment">#SBATCH --job-name=install-nvidia</span><br><br><span class="hljs-comment">### 指定该作业的运行分区,sinfo 获取分区列表</span><br><span class="hljs-comment">#SBATCH --partition=body</span><br><br><span class="hljs-comment">### 指定申请的节点</span><br><span class="hljs-comment">#SBATCH --nodelist=gpu4</span><br><br><span class="hljs-comment">### 排除指定的节点;</span><br><span class="hljs-comment">#SBATCH --exclude=gpu1</span><br><br><span class="hljs-comment">### 指定该作业需要1个节点数</span><br><span class="hljs-comment">#SBATCH --nodes=1</span><br><br><span class="hljs-comment">### 该作业需要1个CPU</span><br><span class="hljs-comment">#SBATCH --ntasks=1</span><br><br><span class="hljs-comment">### 申请1块GPU卡</span><br><span class="hljs-comment">#SBATCH --gres=gpu:1</span><br><br><span class="hljs-comment">### 指定从哪个项目扣费。如果没有这条参数,则从个人账户扣费</span><br><span class="hljs-comment">#SBATCH --comment public_cluster</span><br><br><span class="hljs-comment">### 程序的执行命令</span><br><span class="hljs-built_in">source</span> ~/.bashrc<br><span class="hljs-built_in">source</span> activate gcc<br>conda create -y -n gpu python=3.9 pytorch=1.10.2=py3.9_cuda11.1_cudnn8.0.5_0 torchvision=*=py39_cu111 torchaudio=*=py39_cu111 cudatoolkit=11.1 -c pytorch<br></code></pre></td></tr></table></figure>
  191. <h3 id="方式二-编译安装">方式二 编译安装</h3>
  192. <p>折腾了几天,发现 cuda11.2 不支持高于 10.0 的 gcc,而低版本的 gcc 在 ninja 上会报错,以后再折腾吧。</p>
  193. <h4 id="获取源码">获取源码</h4>
  194. <figure class="highlight bash"><table><tr><td class="gutter"><pre><span class="line">1</span><br><span class="line">2</span><br><span class="line">3</span><br><span class="line">4</span><br></pre></td><td class="code"><pre><code class="hljs bash"><span class="hljs-built_in">source</span> ~/.bashrc<br><span class="hljs-comment"># wget cuda -O -| tar -xf -</span><br><span class="hljs-comment"># wget cudnn -O -| tar -xf -</span><br>git <span class="hljs-built_in">clone</span> --depth=1 --recursive https://github.com/pytorch/pytorch<br></code></pre></td></tr></table></figure>
  195. <blockquote>
  196. <p>对于子模块,可以先不要在<code>git clone</code>的时候加上<code>--recursive</code>,等主体部分下载完之后,该文件夹中有个隐藏文件称为:<code>.gitmodules</code>,把子项目中的<code>url</code>地址同样加上<code>.cnpmjs.org</code>后缀,然后利用<code>git submodule sync</code>更新子项目对应的url,最后再<code>git submodule update --init --recursive</code>,即可正常网速clone完所有子项目</p>
  197. </blockquote>
  198. <blockquote>
  199. <p>如果集群无法访问 GitHub,可以先获取源码后,<code>tar -zcPf /root/tmp/pytorch.tar.gz pytorch</code> 打包,<a href="/Rclone-bei-fen-VPS-shu-ju-dao-onedrive">上传到集群</a>,<code>tar -zxf pytorch.tar.gz</code> 解包。</p>
  200. </blockquote>
  201. <figure class="highlight bash"><table><tr><td class="gutter"><pre><span class="line">1</span><br><span class="line">2</span><br><span class="line">3</span><br><span class="line">4</span><br><span class="line">5</span><br><span class="line">6</span><br><span class="line">7</span><br><span class="line">8</span><br><span class="line">9</span><br><span class="line">10</span><br><span class="line">11</span><br><span class="line">12</span><br><span class="line">13</span><br><span class="line">14</span><br><span class="line">15</span><br></pre></td><td class="code"><pre><code class="hljs bash"><span class="hljs-meta">#!/bin/bash</span><br><br><span class="hljs-comment">### 设置该作业的作业名</span><br><span class="hljs-comment">#SBATCH --job-name=ungzip-nvidia</span><br><br><span class="hljs-comment">### 指定该作业需要1个节点数</span><br><span class="hljs-comment">#SBATCH --nodes=1</span><br><br><span class="hljs-comment">### 每个节点所运行的进程数为1</span><br><span class="hljs-comment">#SBATCH --ntasks-per-node=1</span><br><br><span class="hljs-comment">### 程序的执行命令</span><br><span class="hljs-built_in">source</span> ~/.bashrc<br><span class="hljs-built_in">cd</span> ~<br>tar -zxf pytorch.tar.gz<br></code></pre></td></tr></table></figure>
  202. <h4 id="进行编译">进行编译</h4>
  203. <figure class="highlight bash"><table><tr><td class="gutter"><pre><span class="line">1</span><br><span class="line">2</span><br><span class="line">3</span><br><span class="line">4</span><br><span class="line">5</span><br><span class="line">6</span><br><span class="line">7</span><br><span class="line">8</span><br><span class="line">9</span><br><span class="line">10</span><br><span class="line">11</span><br><span class="line">12</span><br><span class="line">13</span><br><span class="line">14</span><br><span class="line">15</span><br><span class="line">16</span><br><span class="line">17</span><br><span class="line">18</span><br><span class="line">19</span><br><span class="line">20</span><br><span class="line">21</span><br><span class="line">22</span><br><span class="line">23</span><br><span class="line">24</span><br><span class="line">25</span><br><span class="line">26</span><br><span class="line">27</span><br><span class="line">28</span><br><span class="line">29</span><br><span class="line">30</span><br><span class="line">31</span><br><span class="line">32</span><br><span class="line">33</span><br><span class="line">34</span><br><span class="line">35</span><br><span class="line">36</span><br><span class="line">37</span><br><span class="line">38</span><br><span class="line">39</span><br><span class="line">40</span><br><span class="line">41</span><br><span class="line">42</span><br><span class="line">43</span><br><span class="line">44</span><br><span class="line">45</span><br><span class="line">46</span><br><span class="line">47</span><br><span class="line">48</span><br><span class="line">49</span><br><span class="line">50</span><br><span class="line">51</span><br><span class="line">52</span><br><span class="line">53</span><br><span class="line">54</span><br><span class="line">55</span><br></pre></td><td class="code"><pre><code class="hljs bash"><span class="hljs-meta">#!/bin/bash</span><br><br><span class="hljs-comment">### 设置该作业的作业名</span><br><span class="hljs-comment">#SBATCH --job-name=install-nvidia</span><br><br><span class="hljs-comment">### 指定该作业的运行分区,sinfo 获取分区列表</span><br><span class="hljs-comment">#SBATCH --partition=body</span><br><br><span class="hljs-comment">### 指定申请的节点</span><br><span class="hljs-comment">#SBATCH --nodelist=gpu4</span><br><br><span class="hljs-comment">### 排除指定的节点;</span><br><span class="hljs-comment">#SBATCH --exclude=gpu1</span><br><br><span class="hljs-comment">### 指定该作业需要1个节点数</span><br><span class="hljs-comment">#SBATCH --nodes=1</span><br><br><span class="hljs-comment">### 该作业需要4个CPU</span><br><span class="hljs-comment">#SBATCH --ntasks=4</span><br><br><span class="hljs-comment">### 申请1块GPU卡</span><br><span class="hljs-comment">#SBATCH --gres=gpu:1</span><br><br><span class="hljs-comment">### 指定从哪个项目扣费。如果没有这条参数,则从个人账户扣费</span><br><span class="hljs-comment">#SBATCH --comment public_cluster</span><br><br><span class="hljs-comment">### 程序的执行命令</span><br><span class="hljs-built_in">source</span> ~/.bashrc<br>conda create -y -n gpu python=3.10 -c conda-forge<br><span class="hljs-built_in">source</span> activate gpu<br>conda install mkl mkl-include -c conda-forge<br>conda install cmake -c conda-forge<br>conda install ninja=1.11.1 -c conda-forge <span class="hljs-comment">## 确保是最新版本,不然报错</span><br><span class="hljs-built_in">cd</span> ~/pytorch/<br>pip install -r requirements.txt<br><span class="hljs-built_in">export</span> CMAKE_PREFIX_PATH=<span class="hljs-variable">$&#123;CONDA_PREFIX:-&quot;$(dirname $(which conda))/../&quot;&#125;</span><br><span class="hljs-built_in">export</span> USE_CUDA=1<br><span class="hljs-built_in">export</span> USE_CUDNN=1<br>CUDNN_HOME=~/cuda/cudnn-linux-x86_64-8.9.4.25_cuda11-archive<br><span class="hljs-built_in">export</span> CUDNN_LIB_DIR=<span class="hljs-variable">$CUDNN_HOME</span>/lib<br><span class="hljs-built_in">export</span> CUDNN_INCLUDE_DIR=<span class="hljs-variable">$CUDNN_HOME</span>/include<br><span class="hljs-built_in">export</span> CUDNN_LIBRARY=<span class="hljs-variable">$CUDNN_HOME</span>/lib/libcudnn.so<br><span class="hljs-built_in">export</span> CUDNN_LIBRARY_PATH=<span class="hljs-variable">$CUDNN_LIBRARY</span><br><span class="hljs-built_in">export</span> CUDA_HOME=/opt/app/cuda/11.2<br><span class="hljs-built_in">export</span> CMAKE_CUDA_COMPILER=<span class="hljs-variable">$CUDA_HOME</span>/bin/nvcc<br><span class="hljs-built_in">export</span> CMAKE_CUDA_ARCHITECTURES=<span class="hljs-string">&quot;60;70;75;80&quot;</span><br><span class="hljs-built_in">export</span> TORCH_CUDA_ARCH_LIST=<span class="hljs-string">&quot;6.0;7.0;7.5;8.0&quot;</span><br>GCC_HOME=~/miniconda3/envs/gcc<br><span class="hljs-built_in">export</span> CUDAHOSTCXX=<span class="hljs-variable">$GCC_HOME</span>/bin/g++<br><span class="hljs-built_in">export</span> CC=<span class="hljs-variable">$GCC_HOME</span>/bin/gcc<br><span class="hljs-built_in">export</span> CXX=<span class="hljs-variable">$GCC_HOME</span>/bin/g++<br><span class="hljs-built_in">export</span> PATH=<span class="hljs-variable">$CUDA_HOME</span>/bin:<span class="hljs-variable">$PATH</span><br><span class="hljs-built_in">export</span> LD_LIBRARY_PATH=<span class="hljs-variable">$CUDA_HOME</span>/lib64:<span class="hljs-variable">$CUDA_HOME</span>/extras/CUPTI/lib64:<span class="hljs-variable">$CUDNN_LIB_DIR</span>:<span class="hljs-variable">$LD_LIBRARY_PATH</span><br><span class="hljs-built_in">rm</span> -rf build<br>python setup.py develop -allow-unsupported-compiler<br></code></pre></td></tr></table></figure>
  204. <h2 id="检测-pytorch">检测 pytorch</h2>
  205. <figure class="highlight bash"><table><tr><td class="gutter"><pre><span class="line">1</span><br><span class="line">2</span><br><span class="line">3</span><br><span class="line">4</span><br></pre></td><td class="code"><pre><code class="hljs bash"><span class="hljs-built_in">source</span> ~/.bashrc<br>conda run -n gpu whereis python<br><span class="hljs-comment">## /home/uxxx/miniconda3/envs/gpu/bin/python</span><br>nano test.py &amp;&amp; <span class="hljs-built_in">chmod</span> +x test.py<br></code></pre></td></tr></table></figure>
  206. <figure class="highlight python"><table><tr><td class="gutter"><pre><span class="line">1</span><br><span class="line">2</span><br><span class="line">3</span><br><span class="line">4</span><br><span class="line">5</span><br><span class="line">6</span><br><span class="line">7</span><br><span class="line">8</span><br><span class="line">9</span><br><span class="line">10</span><br><span class="line">11</span><br><span class="line">12</span><br></pre></td><td class="code"><pre><code class="hljs python"><span class="hljs-comment">#!/home/uxxx/miniconda3/envs/gpu/bin/python</span><br><br><span class="hljs-comment"># 检测CUDA是否安装正确并能被Pytorch检测</span><br><span class="hljs-keyword">import</span> torch <span class="hljs-comment"># 如果pytorch安装成功即可导入</span><br><span class="hljs-built_in">print</span>(torch.cuda.is_available()) <span class="hljs-comment"># 查看CUDA是否可用</span><br><span class="hljs-built_in">print</span>(torch.cuda.device_count()) <span class="hljs-comment"># 查看可用的CUDA数量</span><br><span class="hljs-built_in">print</span>(torch.version.cuda) <span class="hljs-comment"># 查看CUDA的版本号</span><br><br><span class="hljs-comment"># 检测能否调用CUDA加速</span><br>a = torch.Tensor(<span class="hljs-number">5</span>,<span class="hljs-number">3</span>)<br>a = a.cuda()<br><span class="hljs-built_in">print</span>(a)<br></code></pre></td></tr></table></figure>
  207. <figure class="highlight bash"><table><tr><td class="gutter"><pre><span class="line">1</span><br><span class="line">2</span><br><span class="line">3</span><br><span class="line">4</span><br><span class="line">5</span><br><span class="line">6</span><br><span class="line">7</span><br><span class="line">8</span><br><span class="line">9</span><br><span class="line">10</span><br><span class="line">11</span><br><span class="line">12</span><br><span class="line">13</span><br><span class="line">14</span><br><span class="line">15</span><br><span class="line">16</span><br><span class="line">17</span><br><span class="line">18</span><br><span class="line">19</span><br><span class="line">20</span><br><span class="line">21</span><br><span class="line">22</span><br><span class="line">23</span><br><span class="line">24</span><br><span class="line">25</span><br><span class="line">26</span><br><span class="line">27</span><br><span class="line">28</span><br><span class="line">29</span><br><span class="line">30</span><br><span class="line">31</span><br><span class="line">32</span><br><span class="line">33</span><br><span class="line">34</span><br><span class="line">35</span><br><span class="line">36</span><br><span class="line">37</span><br><span class="line">38</span><br></pre></td><td class="code"><pre><code class="hljs bash"><span class="hljs-meta">#!/bin/bash</span><br><br><span class="hljs-comment">### 设置该作业的作业名</span><br><span class="hljs-comment">#SBATCH --job-name=test-nvidia</span><br><br><span class="hljs-comment">### 指定该作业的运行分区,sinfo 获取分区列表</span><br><span class="hljs-comment">#SBATCH --partition=body</span><br><br><span class="hljs-comment">### 指定申请的节点</span><br><span class="hljs-comment">#SBATCH --nodelist=gpu4</span><br><br><span class="hljs-comment">### 排除指定的节点;</span><br><span class="hljs-comment">#SBATCH --exclude=gpu1</span><br><br><span class="hljs-comment">### 指定该作业需要1个节点数</span><br><span class="hljs-comment">#SBATCH --nodes=1</span><br><br><span class="hljs-comment">### 该作业需要1个CPU</span><br><span class="hljs-comment">#SBATCH --ntasks=1</span><br><br><span class="hljs-comment">### 申请1块GPU卡</span><br><span class="hljs-comment">#SBATCH --gres=gpu:1</span><br><br><span class="hljs-comment">### 指定从哪个项目扣费。如果没有这条参数,则从个人账户扣费</span><br><span class="hljs-comment">#SBATCH --comment public_cluster</span><br><br><span class="hljs-comment">### 程序的执行命令</span><br><span class="hljs-built_in">source</span> ~/.bashrc<br><span class="hljs-built_in">source</span> activate gpu<br><span class="hljs-built_in">cd</span> ~<br>GCC_HOME=~/miniconda3/envs/gcc<br><span class="hljs-built_in">export</span> CC=<span class="hljs-variable">$GCC_HOME</span>/bin/gcc<br><span class="hljs-built_in">export</span> CXX=<span class="hljs-variable">$GCC_HOME</span>/bin/g++<br>DRIVER_HOME=/opt/app/nvidia/460.91.03<br><span class="hljs-built_in">export</span> PATH=<span class="hljs-variable">$DRIVER_HOME</span>/bin:<span class="hljs-variable">$PATH</span> <span class="hljs-comment"># 重要</span><br><span class="hljs-built_in">export</span> LD_LIBRARY_PATH=<span class="hljs-variable">$DRIVER_HOME</span>/lib:<span class="hljs-variable">$LD_LIBRARY_PATH</span> <span class="hljs-comment"># 重要</span><br><br>python ./test.py<br></code></pre></td></tr></table></figure>
  208. <h2 id="附加-安装-ComfyUI">附加: 安装 ComfyUI</h2>
  209. <h3 id="安装-xformers">安装 xformers</h3>
  210. <figure class="highlight bash"><table><tr><td class="gutter"><pre><span class="line">1</span><br><span class="line">2</span><br><span class="line">3</span><br><span class="line">4</span><br><span class="line">5</span><br><span class="line">6</span><br><span class="line">7</span><br><span class="line">8</span><br><span class="line">9</span><br><span class="line">10</span><br><span class="line">11</span><br><span class="line">12</span><br><span class="line">13</span><br><span class="line">14</span><br><span class="line">15</span><br><span class="line">16</span><br><span class="line">17</span><br><span class="line">18</span><br><span class="line">19</span><br><span class="line">20</span><br><span class="line">21</span><br><span class="line">22</span><br><span class="line">23</span><br><span class="line">24</span><br><span class="line">25</span><br><span class="line">26</span><br><span class="line">27</span><br><span class="line">28</span><br><span class="line">29</span><br><span class="line">30</span><br><span class="line">31</span><br><span class="line">32</span><br><span class="line">33</span><br><span class="line">34</span><br><span class="line">35</span><br><span class="line">36</span><br><span class="line">37</span><br><span class="line">38</span><br><span class="line">39</span><br><span class="line">40</span><br><span class="line">41</span><br><span class="line">42</span><br></pre></td><td class="code"><pre><code class="hljs bash"><span class="hljs-meta">#!/bin/bash</span><br><br><span class="hljs-comment">### 设置该作业的作业名</span><br><span class="hljs-comment">#SBATCH --job-name=install-nvidia-xformers</span><br><br><span class="hljs-comment">### 指定该作业的运行分区,sinfo 获取分区列表</span><br><span class="hljs-comment">#SBATCH --partition=body</span><br><br><span class="hljs-comment">### 指定申请的节点</span><br><span class="hljs-comment">#SBATCH --nodelist=gpu4</span><br><br><span class="hljs-comment">### 排除指定的节点;</span><br><span class="hljs-comment">#SBATCH --exclude=gpu1</span><br><br><span class="hljs-comment">### 指定该作业需要1个节点数</span><br><span class="hljs-comment">#SBATCH --nodes=1</span><br><br><span class="hljs-comment">### 该作业需要1个CPU</span><br><span class="hljs-comment">#SBATCH --ntasks=1</span><br><br><span class="hljs-comment">### 申请1块GPU卡</span><br><span class="hljs-comment">#SBATCH --gres=gpu:1</span><br><br><span class="hljs-comment">### 指定从哪个项目扣费。如果没有这条参数,则从个人账户扣费</span><br><span class="hljs-comment">#SBATCH --comment public_cluster</span><br><br><span class="hljs-comment">### 程序的执行命令</span><br><span class="hljs-built_in">source</span> ~/.bashrc<br><span class="hljs-built_in">source</span> activate gpu<br><span class="hljs-built_in">cd</span> ~<br>GCC_HOME=~/miniconda3/envs/gcc<br><span class="hljs-built_in">export</span> CC=<span class="hljs-variable">$GCC_HOME</span>/bin/gcc<br><span class="hljs-built_in">export</span> CXX=<span class="hljs-variable">$GCC_HOME</span>/bin/g++<br>DRIVER_HOME=/opt/app/nvidia/460.91.03<br><span class="hljs-built_in">export</span> PATH=<span class="hljs-variable">$DRIVER_HOME</span>/bin:<span class="hljs-variable">$PATH</span> <span class="hljs-comment"># 重要</span><br><span class="hljs-built_in">export</span> LD_LIBRARY_PATH=<span class="hljs-variable">$DRIVER_HOME</span>/lib:<span class="hljs-variable">$LD_LIBRARY_PATH</span> <span class="hljs-comment"># 重要</span><br><br>wget https://github.com/comfyanonymous/ComfyUI/archive/refs/heads/master.zip -O comfyUI.zip<br>unzip comfyUI.zip <br><span class="hljs-built_in">cd</span> ComfyUI-master<br>pip install xformers<br>pip install -r requirements.txt<br></code></pre></td></tr></table></figure>
  211. <h3 id="启动-comfyUI">启动 comfyUI</h3>
  212. <ul>
  213. <li><a href="/-ji-lu--an-zhuang-npsfrp-fu-wu-duan-yu-ke-hu-duan">安装内网穿透</a></li>
  214. </ul>
  215. <figure class="highlight bash"><table><tr><td class="gutter"><pre><span class="line">1</span><br><span class="line">2</span><br><span class="line">3</span><br><span class="line">4</span><br><span class="line">5</span><br><span class="line">6</span><br><span class="line">7</span><br><span class="line">8</span><br><span class="line">9</span><br><span class="line">10</span><br><span class="line">11</span><br><span class="line">12</span><br><span class="line">13</span><br><span class="line">14</span><br><span class="line">15</span><br><span class="line">16</span><br><span class="line">17</span><br><span class="line">18</span><br><span class="line">19</span><br><span class="line">20</span><br><span class="line">21</span><br><span class="line">22</span><br><span class="line">23</span><br><span class="line">24</span><br><span class="line">25</span><br><span class="line">26</span><br><span class="line">27</span><br><span class="line">28</span><br><span class="line">29</span><br><span class="line">30</span><br><span class="line">31</span><br><span class="line">32</span><br><span class="line">33</span><br><span class="line">34</span><br><span class="line">35</span><br><span class="line">36</span><br><span class="line">37</span><br><span class="line">38</span><br><span class="line">39</span><br><span class="line">40</span><br><span class="line">41</span><br><span class="line">42</span><br><span class="line">43</span><br></pre></td><td class="code"><pre><code class="hljs bash"><span class="hljs-meta">#!/bin/bash</span><br><br><span class="hljs-comment">### 设置该作业的作业名</span><br><span class="hljs-comment">#SBATCH --job-name=run-nvidia</span><br><br><span class="hljs-comment">### 指定该作业的运行分区,sinfo 获取分区列表</span><br><span class="hljs-comment">#SBATCH --partition=body</span><br><br><span class="hljs-comment">### 指定申请的节点</span><br><span class="hljs-comment">#SBATCH --nodelist=gpu4</span><br><br><span class="hljs-comment">### 排除指定的节点;</span><br><span class="hljs-comment">#SBATCH --exclude=gpu1</span><br><br><span class="hljs-comment">### 指定该作业需要1个节点数</span><br><span class="hljs-comment">#SBATCH --nodes=1</span><br><br><span class="hljs-comment">### 该作业需要4个CPU</span><br><span class="hljs-comment">#SBATCH --ntasks=4</span><br><br><span class="hljs-comment">### 申请1块GPU卡</span><br><span class="hljs-comment">#SBATCH --gres=gpu:1</span><br><br><span class="hljs-comment">### 指定从哪个项目扣费。如果没有这条参数,则从个人账户扣费</span><br><span class="hljs-comment">#SBATCH --comment public_cluster</span><br><br><span class="hljs-comment">### 程序的执行命令</span><br><span class="hljs-built_in">source</span> ~/.bashrc<br><span class="hljs-built_in">source</span> activate gpu<br><span class="hljs-built_in">cd</span> ~<br>GCC_HOME=~/miniconda3/envs/gcc<br><span class="hljs-built_in">export</span> CC=<span class="hljs-variable">$GCC_HOME</span>/bin/gcc<br><span class="hljs-built_in">export</span> CXX=<span class="hljs-variable">$GCC_HOME</span>/bin/g++<br>DRIVER_HOME=/opt/app/nvidia/460.91.03<br><span class="hljs-built_in">export</span> PATH=<span class="hljs-variable">$DRIVER_HOME</span>/bin:<span class="hljs-variable">$PATH</span> <span class="hljs-comment"># 重要</span><br><span class="hljs-built_in">export</span> LD_LIBRARY_PATH=<span class="hljs-variable">$DRIVER_HOME</span>/lib:<span class="hljs-variable">$LD_LIBRARY_PATH</span> <span class="hljs-comment"># 重要</span><br><br>~/github/npc -server=&lt;ip&gt;:8024 -vkey=&lt;vkey&gt; -<span class="hljs-built_in">type</span>=tcp &gt; ~/log/npc.log 2&gt;&amp;1 &amp;<br><br><span class="hljs-built_in">cd</span> ~/ComfyUI-master<br><span class="hljs-comment">## 更多参数在 comfy/cli_args.py 中</span><br><span class="hljs-built_in">echo</span> <span class="hljs-string">&#x27;running ComfyUI&#x27;</span><br>python main.py --listen 0.0.0.0 --port 10239 &gt; ~/log/comfyui.log 2&gt;&amp;1<br></code></pre></td></tr></table></figure>
  216. </div>
  217. <hr/>
  218. <div>
  219. <div class="post-metas my-3">
  220. <div class="post-meta">
  221. <i class="iconfont icon-tags"></i>
  222. <a href="/tags/nvidia/" class="print-no-link">#nvidia</a>
  223. <a href="/tags/torch/" class="print-no-link">#torch</a>
  224. <a href="/tags/slurm/" class="print-no-link">#slurm</a>
  225. </div>
  226. </div>
  227. <div class="license-box my-3">
  228. <div class="license-title">
  229. <div>【记录】在 Slurm 平台的GPU集群上使用 Pytorch</div>
  230. <div>https://hexo.limour.top/-ji-lu--zai--Slurm--ping-tai-de-GPU-ji-qun-shang-shi-yong--Pytorch</div>
  231. </div>
  232. <div class="license-meta">
  233. <div class="license-meta-item">
  234. <div>Author</div>
  235. <div>Limour</div>
  236. </div>
  237. <div class="license-meta-item license-meta-date">
  238. <div>Posted on</div>
  239. <div>September 6, 2023</div>
  240. </div>
  241. <div class="license-meta-item license-meta-date">
  242. <div>Updated on</div>
  243. <div>March 19, 2024</div>
  244. </div>
  245. <div class="license-meta-item">
  246. <div>Licensed under</div>
  247. <div>
  248. <a class="print-no-link" target="_blank" href="https://creativecommons.org/licenses/by-nc-sa/4.0/">
  249. <span class="hint--top hint--rounded" aria-label="BY - Attribution">
  250. <i class="iconfont icon-cc-by"></i>
  251. </span>
  252. </a>
  253. <a class="print-no-link" target="_blank" href="https://creativecommons.org/licenses/by-nc-sa/4.0/">
  254. <span class="hint--top hint--rounded" aria-label="NC - Non-commercial">
  255. <i class="iconfont icon-cc-nc"></i>
  256. </span>
  257. </a>
  258. <a class="print-no-link" target="_blank" href="https://creativecommons.org/licenses/by-nc-sa/4.0/">
  259. <span class="hint--top hint--rounded" aria-label="SA - Share-alike">
  260. <i class="iconfont icon-cc-sa"></i>
  261. </span>
  262. </a>
  263. </div>
  264. </div>
  265. </div>
  266. <div class="license-icon iconfont"></div>
  267. </div>
  268. <div class="post-prevnext my-3">
  269. <article class="post-prev col-6">
  270. <a href="/gao-ji-ban-wen-juan-xing--SurveyKing--da-jian-guo-cheng" title="【记录】高级版问卷星 SurveyKing 搭建过程">
  271. <i class="iconfont icon-arrowleft"></i>
  272. <span class="hidden-mobile">【记录】高级版问卷星 SurveyKing 搭建过程</span>
  273. <span class="visible-mobile">Previous</span>
  274. </a>
  275. </article>
  276. <article class="post-next col-6">
  277. <a href="/-ji-lu--da-jian-RSS-yue-du-qi-Miniflux" title="【记录】搭建 RSS 阅读器 Miniflux">
  278. <span class="hidden-mobile">【记录】搭建 RSS 阅读器 Miniflux</span>
  279. <span class="visible-mobile">Next</span>
  280. <i class="iconfont icon-arrowright"></i>
  281. </a>
  282. </article>
  283. </div>
  284. </div>
  285. <article id="comments" lazyload>
  286. <div id="waline"></div>
  287. <script type="text/javascript">
  288. Fluid.utils.loadComments('#waline', function() {
  289. Fluid.utils.createCssLink('https://cdn.staticfile.org/waline/2.15.5/waline.css')
  290. Fluid.utils.createScript('https://cdn.staticfile.org/waline/2.15.5/waline.js', function() {
  291. var options = Object.assign(
  292. {"serverURL":"https://comments.limour.top","path":"window.location.pathname","meta":["nick","mail","link"],"requiredMeta":["nick"],"lang":"zh-CN","emoji":["https://jscdn.limour.top/gh/walinejs/emojis/weibo"],"dark":"html[data-user-color-scheme=\"dark\"]","wordLimit":0,"pageSize":10},
  293. {
  294. el: '#waline',
  295. path: window.location.pathname
  296. }
  297. )
  298. Waline.init(options);
  299. Fluid.utils.waitElementVisible('#waline .vcontent', () => {
  300. var imgSelector = '#waline .vcontent img:not(.vemoji)';
  301. Fluid.plugins.imageCaption(imgSelector);
  302. Fluid.plugins.fancyBox(imgSelector);
  303. })
  304. });
  305. });
  306. </script>
  307. <noscript>Please enable JavaScript to view the comments</noscript>
  308. </article>
  309. </article>
  310. </div>
  311. </div>
  312. </div>
  313. <div class="side-col d-none d-lg-block col-lg-2">
  314. <aside class="sidebar" style="margin-left: -1rem">
  315. <div id="toc">
  316. <p class="toc-header">
  317. <i class="iconfont icon-list"></i>
  318. <span>Table of Contents</span>
  319. </p>
  320. <div class="toc-body" id="toc-body"></div>
  321. </div>
  322. </aside>
  323. </div>
  324. </div>
  325. </div>
  326. <a id="scroll-top-button" aria-label="TOP" href="#" role="button">
  327. <i class="iconfont icon-arrowup" aria-hidden="true"></i>
  328. </a>
  329. <div class="modal fade" id="modalSearch" tabindex="-1" role="dialog" aria-labelledby="ModalLabel"
  330. aria-hidden="true">
  331. <div class="modal-dialog modal-dialog-scrollable modal-lg" role="document">
  332. <div class="modal-content">
  333. <div class="modal-header text-center">
  334. <h4 class="modal-title w-100 font-weight-bold">Search</h4>
  335. <button type="button" id="local-search-close" class="close" data-dismiss="modal" aria-label="Close">
  336. <span aria-hidden="true">&times;</span>
  337. </button>
  338. </div>
  339. <div class="modal-body mx-3">
  340. <div class="md-form mb-5">
  341. <input type="text" id="local-search-input" class="form-control validate">
  342. <label data-error="x" data-success="v" for="local-search-input">Keyword</label>
  343. </div>
  344. <div class="list-group" id="local-search-result"></div>
  345. </div>
  346. </div>
  347. </div>
  348. </div>
  349. </main>
  350. <footer>
  351. <div class="footer-inner">
  352. <div class="footer-content">
  353. <a target="_blank" rel="nofollow noopener" href="http://www.beian.gov.cn/portal/registerSystemInfo?recordcode=43130202000203"><img src="https://img.limour.top/2023/08/27/64eadeb81d6a0.webp" srcset="https://jscdn.limour.top/gh/Limour-dev/Sakurairo_Vision/load_svg/inload.svg" lazyload>湘公网安备43130202000203号 </a> <a target="_blank" rel="nofollow noopener" href="https://beian.miit.gov.cn/">湘ICP备20008299号 </a> <a target="_blank" rel="nofollow noopener" href="https://icp.gov.moe/?keyword=20210128">萌ICP备20210128号</a> <br> <a href="https://www.foreverblog.cn/" target="_blank"> <img src="https://img.foreverblog.cn/logo_en_default.png" srcset="https://jscdn.limour.top/gh/Limour-dev/Sakurairo_Vision/load_svg/inload.svg" lazyload alt="" style="width:auto;height:24px"> </a> <br> <a href="https://hexo.io" target="_blank" rel="nofollow noopener"><span>Hexo</span></a> <i class="iconfont icon-love"></i> <a href="https://github.com/fluid-dev/hexo-theme-fluid" target="_blank" rel="nofollow noopener"><span>Fluid</span></a> <i class="iconfont icon-love"></i> <a href="https://github.com/limour-blog/limour-blog.github.io" target="_blank" rel="nofollow noopener"><span>SRC</span></a> <i class="iconfont icon-love"></i> <a href="https://web.archive.org/web/20231130095837/https://effectiveacceleration.tech/" target="_blank" rel="nofollow noopener"><span>e/Acc</span></a>
  354. </div>
  355. </div>
  356. </footer>
  357. <!-- Scripts -->
  358. <script src="https://jscdn.limour.top/npm/nprogress@0.2.0/nprogress.min.js" ></script>
  359. <link rel="stylesheet" href="https://jscdn.limour.top/npm/nprogress@0.2.0/nprogress.min.css" />
  360. <script>
  361. NProgress.configure({"showSpinner":false,"trickleSpeed":100})
  362. NProgress.start()
  363. window.addEventListener('load', function() {
  364. NProgress.done();
  365. })
  366. </script>
  367. <script src="https://jscdn.limour.top/npm/jquery@3.6.4/dist/jquery.min.js" ></script>
  368. <script src="https://jscdn.limour.top/npm/bootstrap@4.6.1/dist/js/bootstrap.min.js" ></script>
  369. <script src="/js/events.js" ></script>
  370. <script src="/js/plugins.js" ></script>
  371. <script src="/js/img-lazyload.js" ></script>
  372. <script>
  373. Fluid.utils.createScript('https://jscdn.limour.top/npm/tocbot@4.20.1/dist/tocbot.min.js', function() {
  374. var toc = jQuery('#toc');
  375. if (toc.length === 0 || !window.tocbot) { return; }
  376. var boardCtn = jQuery('#board-ctn');
  377. var boardTop = boardCtn.offset().top;
  378. window.tocbot.init(Object.assign({
  379. tocSelector : '#toc-body',
  380. contentSelector : '.markdown-body',
  381. linkClass : 'tocbot-link',
  382. activeLinkClass : 'tocbot-active-link',
  383. listClass : 'tocbot-list',
  384. isCollapsedClass: 'tocbot-is-collapsed',
  385. collapsibleClass: 'tocbot-is-collapsible',
  386. scrollSmooth : true,
  387. includeTitleTags: true,
  388. headingsOffset : -boardTop,
  389. }, CONFIG.toc));
  390. if (toc.find('.toc-list-item').length > 0) {
  391. toc.css('visibility', 'visible');
  392. }
  393. Fluid.events.registerRefreshCallback(function() {
  394. if ('tocbot' in window) {
  395. tocbot.refresh();
  396. var toc = jQuery('#toc');
  397. if (toc.length === 0 || !tocbot) {
  398. return;
  399. }
  400. if (toc.find('.toc-list-item').length > 0) {
  401. toc.css('visibility', 'visible');
  402. }
  403. }
  404. });
  405. });
  406. </script>
  407. <script src=https://lib.baomitu.com/clipboard.js/2.0.11/clipboard.min.js></script>
  408. <script>Fluid.plugins.codeWidget();</script>
  409. <script>
  410. Fluid.utils.createScript('https://jscdn.limour.top/npm/anchor-js@4.3.1/anchor.min.js', function() {
  411. window.anchors.options = {
  412. placement: CONFIG.anchorjs.placement,
  413. visible : CONFIG.anchorjs.visible
  414. };
  415. if (CONFIG.anchorjs.icon) {
  416. window.anchors.options.icon = CONFIG.anchorjs.icon;
  417. }
  418. var el = (CONFIG.anchorjs.element || 'h1,h2,h3,h4,h5,h6').split(',');
  419. var res = [];
  420. for (var item of el) {
  421. res.push('.markdown-body > ' + item.trim());
  422. }
  423. if (CONFIG.anchorjs.placement === 'left') {
  424. window.anchors.options.class = 'anchorjs-link-left';
  425. }
  426. window.anchors.add(res.join(', '));
  427. Fluid.events.registerRefreshCallback(function() {
  428. if ('anchors' in window) {
  429. anchors.removeAll();
  430. var el = (CONFIG.anchorjs.element || 'h1,h2,h3,h4,h5,h6').split(',');
  431. var res = [];
  432. for (var item of el) {
  433. res.push('.markdown-body > ' + item.trim());
  434. }
  435. if (CONFIG.anchorjs.placement === 'left') {
  436. anchors.options.class = 'anchorjs-link-left';
  437. }
  438. anchors.add(res.join(', '));
  439. }
  440. });
  441. });
  442. </script>
  443. <script>Fluid.plugins.imageCaption();</script>
  444. <script src="/js/local-search.js" ></script>
  445. <!-- 主题的启动项,将它保持在最底部 -->
  446. <!-- the boot of the theme, keep it at the bottom -->
  447. <script src="/js/boot.js" ></script>
  448. <noscript>
  449. <div class="noscript-warning">Blog works best with JavaScript enabled</div>
  450. </noscript>
  451. <!-- hexo injector body_end start -->
  452. <script defer src="/theme-inject/timeliness.js"></script>
  453. <!-- hexo injector body_end end --></body>
  454. </html>