--- title: 使用FindTransferAnchors对样本进行预注释 tags: [] id: '2362' categories: - - 注释 - - 预处理 date: 2022-09-29 21:42:04 --- ## 处理参考样本 ```R ref_sce <- readRDS('~/upload/zl_liu/data/pca.rds') ref_sce <- subset(ref_sce, group == 'CRPC') table(ref_sce@meta.data$cell_type_fig3) g2m_genes <- Seurat::CaseMatch(search=Seurat::cc.genes$g2m.genes, match=rownames(ref_sce)) s_genes <- Seurat::CaseMatch(search=Seurat::cc.genes$s.genes, match=rownames(ref_sce)) ref_sce <- Seurat::CellCycleScoring(ref_sce, g2m.features=g2m_genes, s.features=s_genes) ref_sce$CC.Difference <- ref_sce$S.Score - ref_sce$G2M.Score ref_sce[["percent.mt"]] <- Seurat::PercentageFeatureSet(ref_sce, pattern = "^MT-") ref_sce[["percent.ERCC"]] <- Seurat::PercentageFeatureSet(ref_sce, pattern = "^ERCC-") ref_sce[["percent.rp"]] <- Seurat::PercentageFeatureSet(ref_sce, pattern = "^RP[SL]") ref_sce <- Seurat::SplitObject(object = ref_sce, split.by = 'orig.ident') ``` ### integration ```R ref_sce <- lapply(X = ref_sce, FUN = function(x) { x <- Seurat::SCTransform(x, vst.flavor = "v2", vars.to.regress = c("CC.Difference", "percent.mt", "percent.rp"), verbose = F) }) features <- Seurat::SelectIntegrationFeatures(object.list = ref_sce, assay = rep('SCT', length(ref_sce))) ref_sce <- Seurat::PrepSCTIntegration(object.list = ref_sce, anchor.features = features, assay = rep('SCT', length(ref_sce))) anchors <- Seurat::FindIntegrationAnchors(object.list = ref_sce, normalization.method = "SCT", anchor.features = features, assay = rep('SCT', length(ref_sce))) combined <- Seurat::IntegrateData(anchorset = anchors, normalization.method = "SCT") combined <- Seurat::RunPCA(combined, verbose = FALSE) combined <- Seurat::RunUMAP(combined, reduction = "pca", dims = 1:30, verbose = FALSE) Seurat::DimPlot(combined, reduction = "umap", group.by = "cell_type_fig3", repel = T, label = T) ``` ## 处理预处理完的样本 [样本来自此](https://occdn.limour.top/2358.html) ### 打个补丁 ```R sce <- readRDS('SRX6887740.rds') Seurat::DefaultAssay(sce) <- 'RNA' sce[["percent.rp"]] <- Seurat::PercentageFeatureSet(sce, pattern = "^RP[SL]") sce <- Seurat::SCTransform(sce, vst.flavor = "v2", vars.to.regress = c("CC.Difference", "percent.mt", "percent.rp"), verbose = F) ``` ### FindTransferAnchors ```R anchors <- Seurat::FindTransferAnchors(reference = combined, query = sce, normalization.method = "SCT", reference.assay = 'integrated', query.assay = 'SCT') ``` ### TransferData ```R predictions <- Seurat::TransferData(anchorset = anchors, refdata = combined$cell_type_fig3) sce <- AddMetaData(object = sce, metadata = predictions) ``` ### 可视化 ```R sce <- Seurat::RunPCA(sce, verbose = FALSE) sce <- Seurat::RunUMAP(sce, reduction = "pca", dims = 1:30, verbose = FALSE) Seurat::DimPlot(sce, reduction = "umap", group.by = "predicted.id", repel = T, label = T) ```