--- title: 通过conda安装纯净环境的TCGAbiolinks tags: [] id: '1653' categories: - - 数据库 - - 生信 date: 2022-03-30 23:27:08 --- * conda create -n tcga -c conda-forge r-base=4.1.2 -y * conda activate tcga * conda install -c conda-forge r-rvest=1.0.2 -y * conda install -c conda-forge r-xml=3.99\_0.8 -y * conda install -c conda-forge r-rcpparmadillo=0.10.8.1.0 -y * conda install -c conda-forge r-bh=1.78.0\_0 -y * conda install -c conda-forge r-biocmanager=1.30.16 -y * conda install -c bioconda bioconductor-summarizedexperiment=1.24.0 -y * conda install -c bioconda bioconductor-tcgabiolinks=2.22.1 -y * conda install -c bioconda bioconductor-deseq2=1.34.0 -y * conda install -c bioconda bioconductor-rhdf5=2.38.0 -y * conda install -c bioconda bioconductor-limma=3.50.1 -y * conda install -c bioconda bioconductor-apeglm=1.16.0 -y * conda install -c bioconda r-sleuth=0.30.0 -y * conda install -c bioconda r-wasabi=1.0.1 -y * conda install -c conda-forge r-irkernel=1.3 -y * conda install -c conda-forge r-ashr=2.2\_54 -y * conda install -c conda-forge r-robustrankaggreg=1.1 -y * conda install -c conda-forge r-devtools=2.4.3 -y * IRkernel::installspec(name='tcga', displayname='r-tcga') * deseq2 数据要求:低生物学重复 & raw counts;假定负二项分布;适合高通量测序数据 * sleuth 数据要求:**Kallisto**输出的结果 * limma 数据要求:logCPM;假定正态分布;适合芯片数据 * [fpkm数据差异基因分析](https://bioconductor.org/packages/release/bioc/vignettes/limma/inst/doc/usersguide.pdf) :理论上是不能进行分析的,无计可施时可以参考 * 高生物学重复请直接使用 **wilcox.test** 以避免大量假阳性 * 多数据集结果整合:RobustRankAggreg fpkm转tpm示例(基于 SummarizedExperiment 数据框架) ```r fpkmToTpm <- function(fpkm){ exp(log(fpkm) - log(sum(fpkm)) + log(1e6)) } f_fpkmToTpm <- function(l_e){ apply(l_e,2,fpkmToTpm) } assay(sce, "TPM") <- f_fpkmToTpm(assay(sce, "HTSeq - FPKM")) ```