--- title: TCGAbiolinks下载CNV数据 tags: [] id: '2307' categories: - - 数据库 date: 2022-09-08 00:55:29 --- ## 下载Gene水平的数据 ```R library(TCGAbiolinks) query <- GDCquery( project = "TCGA-PRAD", data.category = "Copy Number Variation", data.type = "Gene Level Copy Number", access = "open" ) GDCdownload(query) data <- GDCprepare(query) saveRDS(data, 'prad_cnv.rds') ``` ## 下载Masked数据 ```R query <- GDCquery( project = "TCGA-PRAD", data.category = "Copy Number Variation", data.type = "Masked Copy Number Segment", access = "open" ) GDCdownload(query) data <- GDCprepare(query) saveRDS(data, 'prad_cnv_masked.rds') ``` ## 清洗数据 ### 初步清洗 ```R library(SummarizedExperiment) data <- readRDS('prad_cnv.rds') cnT <- data@assays@data$copy_number cnTcol <- colnames(cnT) type <- as.numeric(substr(cnTcol, 14, 15)) cnT <- cnT[, type<10] colnames(cnT) <- substr(cnTcol,1, 12) rownames(cnT) <- data@rowRanges$gene_name cnT <- na.omit(cnT) ``` ### 精细清洗 [f\_dedup\_IQR](https://occdn.limour.top/2157.html) ```R cnT <- f_dedup_IQR(cnT, rownames(cnT)) cnT <- cnT[,f_rm_duplicated(colnames(cnT))] group <- readRDS('../idea_2/fig3.2/fig5/tcga.predict.rds') cnT <- cnT[,colnames(cnT) %in% rownames(group)] ``` ### 构造cnTable #### 慢速 ```R df <- NULL for (i in 1:ncol(cnT)){ colnames(cnT)[[i]] tmp_df <- data.frame(Hugo_Symbol = rownames(cnT), Tumor_Sample_Barcode = colnames(cnT)[[i]], Variant_Classification=cnT[,i]) tmp_df <- subset(tmp_df, Variant_Classification != 2) df <- rbind(df, tmp_df) } ``` #### 快速 ```R library(reshape2) df <- melt(cnT) colnames(df) = c('Hugo_Symbol', 'Tumor_Sample_Barcode', 'Variant_Classification') df <- subset(df, Variant_Classification != 2) df ``` #### 贴标签 ```R df$Variant_Classification[df$Variant_Classification > 2] <- 'Amp' df$Variant_Classification[df$Variant_Classification < 2] <- 'Del' table(df$Variant_Classification) ``` ### 分组别 ```R df_l <- subset(df, Tumor_Sample_Barcode %in% rownames(group)[group$group == 'Low Risk']) df_h <- subset(df, Tumor_Sample_Barcode %in% rownames(group)[group$group == 'High Risk']) saveRDS(df_l, 'cnT.l.rds') saveRDS(df_h, 'cnT.h.rds') ``` ## 导入maftools [TCGAbiolinks下载maf数据](https://occdn.limour.top/2304.html) ### 清洗数据 ```R cnv_l <- readRDS('cnT.l.rds') cnv_h <- readRDS('cnT.h.rds') prad_l$Tumor_Sample_Barcode <- prad_l$BarCode prad_l <- subset(prad_l, Tumor_Sample_Barcode %in% cnv_l$Tumor_Sample_Barcode) cnv_l <- subset(cnv_l, Tumor_Sample_Barcode %in% prad_l$Tumor_Sample_Barcode) prad_h$Tumor_Sample_Barcode <- prad_h$BarCode prad_h <- subset(prad_h, Tumor_Sample_Barcode %in% cnv_h$Tumor_Sample_Barcode) cnv_h <- subset(cnv_h, Tumor_Sample_Barcode %in% prad_h$Tumor_Sample_Barcode) ``` ### 读入maftools ```R maf_l <- read.maf(prad_l, cnTable = cnv_l) maf_h <- read.maf(prad_h, cnTable = cnv_h) ``` ### 绘制瀑布图 ```R options(repr.plot.width=12, repr.plot.height=8) genes <- subset(lvsh$results, pval < 0.05)$Hugo_Symbol coOncoplot(m1=maf_l, m2=maf_h, m1Name="Low Risk", m2Name="High Risk",genes=genes) ```