title: 单细胞水平的细胞周期评分 tags: [] id: '1573' categories:
library(ggsci)
f_levels2col <- function(df_f, col){
col[as.numeric(df_f)]
}
f_getdfcol <- function(df, cN){
res <- df[[cN]]
names(res) <- rownames(df)
res
}
f_metaG2G <- function(metaG, matrixN=F){
res <- list()
alltype <- unique(metaG[[1]])
for(type in alltype){
res[[type]] <- rownames(metaG)[metaG[[1]] == type]
if (matrixN){
res[[type]] <- gsub('-','.',res[[type]])
}
}
res
}
f_br_cluster_f <- function(sObject, lc_groupN, is_sce){
if(is_sce){
lc_filter <- unlist(unique(sObject[[lc_groupN]]))
}else{
lc_filter <- unlist(unique(sObject[lc_groupN]))
}
lc_filter <- lc_filter[!is.na(lc_filter)]
lc_filter
}
f_br_cluster <- function(sObject, lc_groupN, lc_labelN, lc_prop = F, is_sce=T){
if(is_sce){
lc_g <- f_metaG2G(sObject[[lc_groupN]])
lc_l <- sObject[[lc_labelN]]
}else{
lc_g <- f_metaG2G(sObject[lc_groupN])
lc_l <- sObject[lc_labelN]
}
lc_l[[1]] <- as.character(lc_l[[1]])
res <- data.frame(row.names = f_br_cluster_f(lc_l, lc_labelN, is_sce))
if(lc_prop){
for(Nm in names(lc_g)){
tmp <- prop.table(table(lc_l[lc_g[[Nm]],]))
res[[Nm]] <- tmp[rownames(res)]
}
}else{
for(Nm in names(lc_g)){
tmp <- table(lc_l[lc_g[[Nm]],])
res[[Nm]] <- tmp[rownames(res)]
}
}
res[is.na(res)] = 0
res
}
library(Seurat)
sce <- CellCycleScoring(sce, s.features = cc.genes$s.genes, g2m.features = cc.genes$g2m.genes, set.ident = TRUE)
df <- sce@meta.data
df <- subset(df, immune_annotation != 'immune')
df$Phase_status <- df$Phase
idx <- with(df, S.Score < (median(S.Score) + 4 * mad(S.Score)) & G2M.Score < (median(G2M.Score) + 4 * mad(G2M.Score)))
df[idx, 'Phase_status'] = 'Low cycling'
df[!idx, 'Phase_status'] = 'High cycling'
p <- ggplot() + geom_point(aes(S.Score, G2M.Score, col=patient_id, shape=cell_type, size=Phase_status, alpha=Phase_status), data = df, alpha=f_levels2col(df$Phase_status, c(0.1, 0.5)))
p <- p + theme_bw()
p
ggsave(p, filename = 'fig1.E_12inch.pdf', width = 12, height = 12)
f_test_percent <- function(dfA, dfB, colN, rowN){
n1 <- sum(dfA[[colN]])
n2 <- sum(dfB[[colN]])
a <- dfA[rowN, colN]
c <- dfB[rowN, colN]
b <- n1 - a
d <- n2 - c
mat <- matrix(c(a,c,b,d), ncol = 2, nrow = 2)
res <- chisq.test(mat)
if(min(res$expected) < 5){
res <- fisher.test(mat)
}
res
}
mat4_C <- f_br_cluster(subset(df, group=='CRPC'), 'cell_type', 'Phase_status', is_sce=F)
mat4_H <- f_br_cluster(subset(df, group=='HSPC'), 'cell_type', 'Phase_status', is_sce=F)
f_test_percent(mat4_C, mat4_H, 'Luminal', 'High cycling')
f_test_percent(mat4_C, mat4_H, 'Fibroblasts', 'High cycling')
f_test_percent(mat4_C, mat4_H, 'Endothelial', 'High cycling')
f_test_percent(mat4_C, mat4_H, 'Basal cell', 'High cycling')
a <- t(mat4_H)
t(a/rowSums(a))
a <- t(mat4_C)
t(a/rowSums(a))